WIRELESS

SDR FoOrRuM VERSION 2.0 WIRELESSINNOVATION.ORG

International Tactical Radio Security
Services API Specification

Document WINNF-09-S-0011

Version V1.0.0
14 September 2011

Copyright © 2011 The Software Defined Radio Forum Inc. — All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVAROD IRSS API Specification

WINNF-09-S-0011-V1.0.0

TERMS, CONDITIONS & NOTICES

This document has been prepared by the International Radio Security Services APl Task Group
to assist The Software Defined Radio Forum Inc. (or its successors or assigns, hereafter “the
Forum™). It may be amended or withdrawn at a later time and it is not binding on any member of
the Forum or of the International Radio Security Services API Task Group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the
Forum for use in this document retain copyright ownership of their original work, while at the
same time granting the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free
license under the Submitter’s copyrights in the Submission to reproduce, distribute, publish,
display, perform, and create derivative works of the Submission based on that original work for
the purpose of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for
legitimate purposes of the Forum. Copying for monetary gain or for other non-Forum related
purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,
AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT
THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE
WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS
DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the specification set forth in this document, and to provide
supporting documentation.

The document was developed following the Forum's policy on restricted or controlled
information (Policy 009) to ensure that that the document can be shared openly with other
member organizations around the world. Additional Information on this policy can be found
here: http://www.wirelessinnovation.org/page/Policies_and_Procedures. Although this document
contains no restricted or controlled information, the specific implementation of concepts
contained herein may be controlled under the laws of the country of origin for that
implementation. Readers are encouraged, therefore, to consult with a cognizant authority prior to
any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio
Forum Inc.

Copyright © 2011 The Software Defined Radio Forum Inc Page i
All Rights Reserved

http://www.wirelessinnovation.org/page/Policies_and_Procedures

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INDQVARAY IRSS API Specification
F o R U M WINNF-09-S-0011-V1.0.0
Table of Contents
TERMS, CONDITIONS & NOTICES.......ciit ittt [
I 1011 (0T 11 £ o] o OSSPV PRSPPI 1

L1 OVEBIVIBW ..ttt sttt b et s et e ke e s e s b et e e st e et e e nbeemeesbe e teeneesbeenbeaneenreas 1
1.2 Service Group DESCIIPLIONSccuiiieiieiiesieesie ettt e st re e sseenaesneenreas 2

1.2.1 ConcCepts and USAGE OVEIVIEWccuirieiuieieieeestestesiesiesieeseeseesee s s i s b sse e eeennes 2
1.2.2 Platform implementation of interfaces and operations.............ccccvcvevvvieiieesnciiennn, 2
1.2.3 IRSS API Port Definitions / CONNECLIONScc.ccuriierieiieieeie e 3
1.3 MOUES OF SEIVICEouviiiieiti ettt ettt sb e 7
1.4 SEIVICE STAES ...uviivieiieeieeie sttt sttt ettt te et e s bt et eneesbe e teeneesbeenbeaneenreas 7
1.5 ReferenCed DOCUMENTScccviiiieieie ittt sttt st neas 7
ST T LTSS 7
2.1 PrOVIOE SEIVICES.iitiiiiiiieiieieie ettt ettt bbbttt bbbt sb e ne e s e ee e 7
2.2 USE SBIVICES....uieteeiiesiie it etee st e e et e st e st et e st e te e s e s se e teeseease e te e st e aseenbeeneeaseenbeeneeaneeneeeneennes 8
2.3 INEErface MOTUIESccuviiieiiiieie ettt bbb 9
2.3.1 IRSSIICONIIOL.... ittt enes 9
2.3.2 IRSSIIINTOSEC ...cvviiiiiiiiiciee et 12
2.3.3 IRSSIIBYPAESS ...ttt 15
2.3.4 IRSSIIANUA ...t 16
2.3.5 IRSSIIPIOTOCOIovieiecie ettt 19
2.4 SEQUENCE DIAGIAMS.ciuieiiiieiteeite ettt et e e e s ae e steene s s e s reetesnnenreas 20
2.4.1 Two Security Domain Cryptographic Channel.............cccooooiiiiniiiicen, 20
2.4.2 Single Security Domain Cryptographic Channel.............c.ccccooeviiiiiicii e, 22
2.4.3 Stream Multi ChannelsScccoieiieiiiie e 24
244 TRANSEC - ENCIrYPU/DECIYPL ..c.veeivieiicie ittt 26
245 TRANSEC — KBYSIIBAMc.ueiiiiiieiiieiiiiie ittt 27
2.4.6 BYPasS ChannelS.........cccoooiiiiiiiiiciece ettt 29
2.4.7 HaSh Channelsoovoiiieic et 31
2.4.8 PIOTOCOL ..ottt bbbttt 31

3 Service Primitives and ALIIDULEScoiveieie e nne s 33
3.1 IRSS:BYpPass:iChannel...........ccooiiiiiiiice e 33
3.1.1 PUShBYPASS OPEIALIONc.ceueiieiiiiiiisii ettt 33
3.1.2 GetMaxBypassSize OPerationcoceiueeiiieiiiieiie e see e sre e 33
3.2 IRSS: BYPASS:ICONSUMETueiitietiiiteste ettt ettt ettt be b nne s 34
3.2.1 PUShBYPaSS OPEIratioNcccvieiiiiiiieiie ittt aeenree s 34
3.3 IRSS::Control::CertifiCateMgMI.........ooiiiiiiieee e 35
3.3.1 RetrieveCertificate OPerationcccueiiuieiiiiiiie e 35
3.3.2 GetCertficatelds OPErationccooeiiririeieie ittt 35
3.3.3 IsCertficateValid OPerationcccoieiiieiii i 36
3.4 IRSS:Control::ChannelMgMLcciiiiiiiiiece e 37
3.4.1 CreateCryptographicChannel Operation............cccceevveiieiiieiiie e see e 37
3.4.2 CreateTransecChannel OPerationccocueieiiirenenenesieiee e 38
3.4.3 CreateBypassChannel OPerationcccccveivuieiieiieeiiie e siessieesee e sae e sin e 39
3.4.4 CreateHashChannel Operation..........ccoceiieieiiiesieeie e see e 40
3.4.5 CreateMacChannel OPEeration..........cccooceiieieiiieiieie e 41
Copyright © 2011 The Software Defined Radio Forum Inc Page ii

All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVARAY IRSS API Specification

WINNF-09-5-0011-V1.0.0
3.4.6 CreateSignatureChannel Operationccccevevieeiesieeieere e 42
3.4.7 CreateSignatureVerificationChannel Operationcccceoererenenenenenieseeenn 43
3.4.8 CreateProtocolChannel Operationcccocviieieeiieiie i 44
3.4.9 DestroyChannel OPEratioN...........ccccoiiiriiieiieiesiesie sttt 45
3.4.10 AddCryptographicConfiguration OpPerationccccoeevvereiieeseere e e, 46
3.4.11 AddTransecConfiguration OPeration..........ccccoererereririniieierese e 46
3.4.12 RemoveConfiguration OPeration...........cccccvevueiiieieeiiesiieseese e se e e e ee e e, 47
3.4.13 ActiviateConfiguration OPerationccceoerereneninisieieerese e 48
3.4.14 DeactivateConfiguration OPerationccccceevverieeresieeseere e, 49

3.5 IRSS:CONrOLIKEYMUOML ... 49
3.5.1 UpdateKey OPErationcccecoeiieieeiieiieiieseseeseeste e sie e aesre e ssaesreeseesreenneans 49
3.5.2 UpdateKeyWithAlgorithm Operation............ccccevereririninineiese e 50
3.5.3 GetUpdateCount OPErationccocveiueiieiieiieiieseesie e ste et 51
3.5.4 ZeroizeKey OPEratiON.........cceieiiriireiiieieieiesie ettt bbbt 51

3.6 IRSS:1ANAAIICNANNEL ..o 52
3.6.1 PusShData OPErationccceoieiieiiiriiiiiiisieeie e 52
3.6.2 GetMaxDataSize OPErationcccvevueiiieiieie e 52
3.6.3 RESEE OPEIALION.cuiiiiiiieiieiieieie ettt nb bbb 53

3.7 IRSS:1andA::HASHCNENNELovoiiiiiiiiee e 54
3.7. 1 GetHash OPEratiON........cuciiieieieriesie sttt 54

3.8 IRSS:1andA:IMACCNANNELc..oiiiiiiiiie e 54
3.8.1 GEtMAC OPEIALION.....ccuiiiieiieiieieie sttt nb bbb 54
3.8.2 IsMacValid Operation............ccceeieiieieiic ettt 55

3.9 IRSS::1andA::SIgnatureChannel ... 56
3.9.1 GetSignature OPEratioNnccccccieieeiueiieie e see e ste e ste e sre e s sre e re e re e 56

3.10 IRSS::landA::SignatureVerificationChannel..............cccoiiiiiiiiiiee, 57
3.10.1 IsSignatureValid OPerationcccucciiiieiieiiiic e 57

311 IRSS:IANUAIRANUOM ...ttt ere e e et e eneenreas 57
3.11.1 GetPseudoRandoOMOPErAtiON........ccceccuiiieiieeieceese e 57
3.11.2 GetRaNOM OPEIALIONceueeieiiiteite ittt 58

3.12 IRSS::Infosec::CryptographicChannelcccceoiiiiiicie e 59
3.12.1 TransformStream OPErationccooiireririieiierie ettt 59
3.12.2 TransformPackets OPErationccccccvueiieieiieiieie e 60
3.12.3 GetMaxPayloadSize OPEration...........ccceiieieiiereie st 61
3.12.4 GetMaxPacketSize OPEerationccceccueeiiieiiieiie e see e 62
3.12.5 SpaceAvailable OPErationccooiiiiiiiieiiee et 63

3.13 IRSS::Infosec::CryptographiCCONSUMENccviiiieiieiie e 63
3.13.1 PushStream OPErationcccocoiiiiiiiiiiiieieie st 64
3.13.2 PUShPACKELS OPEratiON.......cccviiiiiiiiieiiie ittt ae e sree s 65

3.14 IRSS::INfOSEC::CONIIrOISIGNAIS......octiiiiiiiiicicee e 65
3.14.1 FIOWRESUME OPEIatiONcccvieiiiiiieiiie sttt ettt e e nree s 65

3.15 IRSS::Infosec:: TranseCChaNNelccooi i 66
3.15.1 ENCryptTranseC OPEratiONc.cccuveiieiieeiieiiieesiesieesie e siee s ste e e steesaaesaeesree s 66
3.15.2 DecCryptTranseC OPEratiONccoieieriirerieieie ettt 67
3.15.3 GenerateKeyStream OPEratioNcueiveeiieiiuieiieiieesie e e see e e see e sneesaeesree s 68
3.15.4 GetMaxPayloadSize OPeration.........cccceivereiieesieeieseeseesiesee e eeesee e eseesreesaeens 69

Copyright © 2011 The Software Defined Radio Forum Inc Page iii

All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVARAY IRSS API Specification

WINNF-09-5-0011-V1.0.0
3.16 IRSS::Protocol::Channel..........ccoooiiiiiiiic e 70
3.16.1 PuShMEeSSage OPEratiON.........ccceieiiririirieieieie ettt 70
3.17 IRSS::ProtOCOI I CONSUMETcuiiiitiitiitisieeeeie ettt bbbttt 71
3.17.1 PushMEesSsage OPEratiON.........cccoceiiiiriirinieieie sttt 71

| USSP PR 72
g 1 151 T | OO URTOPORPRPR 72
4.2 BYPASS.AAL...cuiiiiiiiiice e a e e nre s 72
B O] 1 £ N [| U URTOPORPRRPRS 74
A4 TANAALTUL oottt 78
I 1 1 {0 ST T o3 o | OSSPSR 80
4.6 ProtOCOLIAL......cooiiiiiiie e 82
ST 1 SO SSSSRS 84
ST R D - - R 1Y/ 12 ST TRRPPRPRN 84
5.1.1 IRSS:CRANNEIIT ..o e 84
5.1.2 IRSS::Control::Configurationld.............cccccveviiiiiiiieiece e 84
5.1.3 IRSS::Control::CryptoApplicationldccooiiiiiiiiiieee e 84
514 IRSS::CONOLKEYIA ... 84
5.1.5 IRSS::Control::KeyUpdate Algorithmld ... 84
5.1.6 IRSS:Control::Endpointldcccovviiiiiiiiice e 84
5.1.7 IRSS::Control::CryptoMOodUlelldccooiiiiiiiiiiie e 84
5.1.8 IRSS::Control::Certificateldcoovviiiiiieiiiee st 85
5.1.9 IRSS::Control::HashAIgOrithmIdcooveiiiiiie e 85
5.1.10 IRSS::Control::MacAIgorithmIdc.cccveviiiiiece e 85
5.1.11 IRSS::Control::Signature Algorithmild ...t 85
5.1.12 IRSS::Control::CryptoApplicationldSEqUENCE..........cccvevverieiieiiee e, 85
5.1.13 IRSS::Control::CertificateldSEqUENCEccoviiieiiriiereieeee e 85
5.1.14 IRSS::INfOSEC::PaCKEtSEQUENCEveeuviieieii ettt 85
5.2 ENUMEIALIONSotiiiieitieiiieie ettt te et te e e e steeseesreenbeeseeaneesseeneeaseenneenseaneenseas 86
5.2.1 IRSS:Control::Endpointldcccovviiiiiiiice e 86
5.2.2 IRSS::CONrol::DUPIEXITY ..oovveieiiiiiiesiceeee s 86
ST B (=1 o] £ 0] SO STRSTORORRPI 86
5.3.1 IRSS:InvalidChannelld..........ccoooiieiiiieiieee e 86
5.3.2 IRSS:ConfigurationINaCtiVe..........ccceeiuiiieiieieiicce et 86
5.3.3 IRSS::Bypass::MaxBypassSIZEEXCEEURU..........cccooeiiririiiiieiee e 86
5.3.4 IRSS::Bypass::PolicyViolation..........cccccveiiiiiiiiie e 87
5.3.5 IRSS::Control::InvalidCertificateld.............ccoveiiieiiiiiiree e, 87
5.3.6 IRSS:Control::ChannelCreatioNEITOr.........cccooiiiiiiiiieieee e 87
5.3.7 IRSS::Control::ConfigurationACtiVatiONEITOrccoiiiriiiiieie e 87
5.3.8 IRSS::Control::InvalidAlgorithmiIdcccooviiiiiiii e 87
5.3.9 IRSS:Control:: InvalidConfiguration..........cccccoirereiinininieere e 87
5.3.10 IRSS::Control::InvalidConfigurationldccceeiiiiiiiiiiie e 88
5.3.11 IRSS:Control::InvalidCryptoApplicationld...........ccccooviiiiiiiiniieecen, 88
5.3.12 IRSS::Control:: InvalidENdPOINtldcooiiiiiiiiie e 88
5.3.13 IRSS::Control::InvalidENAPOINTPAITccceiiiiiieieiieeeee e 88
5.3.14 IRSS::Control:: INValIdKEYccoiiiiiiiieiiiccie e 88
5.3.15 IRSS::Control::InvalidKeyUpdate Algorithmld...........c.cccoveiimiiiiiiieie e, 89
Copyright © 2011 The Software Defined Radio Forum Inc Page iv

All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVARAY IRSS API Specification

WINNF-09-5-0011-V1.0.0
5.3.16 IRSS::Control::InvalidModuleldccoiiiiiiiiii e 89
5.3.17 IRSS::Control::KeyUPateEITOr..........oiiiieieieieic e 89
5.3.18 IRSS::Control::UnrecognizedCertifiCatecccccveveriieiiiie e 89
5.3.19 IRSS:IaNdA:INVAIAMACcoviiiieiieiese e e 89
5.3.20 IRSS::1andA:: INvalidSIgNaturecceieeiieieecieseee e 90
5.3.21 IRSS:IandA:: INVAIASTALEcvoiiieiieiecie e 90
5.3.22 IRSS::landA::MaxDataSIiZEEXCEEURMccorveririiiiinieieere e 90
5.3.23 IRSS::Infosec::MaxPayloadSizeEXCEEdedcccoviriiieieicieie e 90
5.3.24 IRSS::Infosec::MaxPacketSizeEXCEededccovviiriiiniiieiese e 90
5.3.25 IRSS::Infosec::BadSOMFIagcccooiiiiiiiic e 90
5.3.26 IRSS::INf0SeC::BadTranseCSEedccoiiiiieriirieie et 91
5.3.27 IRSS::Protocol:: INvValidMESSAgE........cc.eieiieieieiesie e 91
5.3.28 IRSS::Protocol::MaxMessageSiZEEXCEEAERMcccvvvvevveiieiieiiee e, 91
5.3.29 IRSS::Protocol::UnrecognizedMESSAGE.c.cerveruerueriiriiiiieiieieiie et 91

T 1 ([0 (1] (TSRS P PP OPRSPROPR 92
5.4.1 IRSS::Control::CryptographicConfiguration.............cc.ccooeeiriereneneseneseseeeees 92
5.4.2 IRSS::Control::TransecConfigurationcccccevveieiieieeresiese e, 92
5.4.3 IRSS:IINTOSEC:IPACKELc.eevieieciiecieee et 93

TS O 10 o] S OO PRPRPRO 93

APPeNdiX A ACRONYMS ... bbbt 94

Figure 1: Channel HTECYCIEociiieece et 2
Figure 2 - IRSS Port Diagram - Single Security DOMAaIN...........cccooiiiiineninineeeseese e 4
Figure 3 - IRSS Port Diagram - Two Security DOMAINSccccevieiieiieiecie e 5
Figure 4 - Control::CertificateMgmt INErTACEcooiiiiiiiiieee e 9
Figure 5 — IRSS::Control::ChannelMgmL.........ccooiiiiiieec e 11
Figure 6 - Control::KeyMgmt INTEITACE.cooviiiieieee e 12
Figure 7 - IRSS::Infosec::CryptographicChannel Interfacecccooveveiviiiiicve e 13
Figure 8 - IRSS::Infosec::CryptographicConsumer INterfacec.covveriienicieienese e 14
Figure 9 IRSS::Infosec::ControlSignals INterfaceccoooeeiiiie i 14
Figure 10 - IRSS::Infosec::TransecChannel INterface...........ccoovieriiiiiiiiiiiccce 15
Figure 11 — IRSS::Bypass::Channel and IRSS::Bypass::Consumer Interfaces.............ccccevuvenens 16
Figure 12 - IRSS::1andA::Channel INtErfaces. ... 18
Figure 13 - IRSS::1andA::Random INtErfacecoeiii e 19
Figure 14 - IRSS::Protocol::Channel INterface..........cooooiiiiiiiiiiic e 20
Figure 15 - IRSS::Protocol::Consumer INterface..........coooveieeiie i 20
Figure 16 - Two Security Domain Cryptographic Channel Sequence Diagramccoceee... 21
Figure 17 - Single Security Domain Cryptographic Channel Sequence Diagram........................ 23
Figure 18 - Stream Multi Channels Sequence Diagramccccooerererenenisiesieeieee e 25
Figure 19 - TRANSEC - Encrypt/Decrypt Sequence Diagramcccccveviieiieeiiesiiesie e 27
Figure 20 - TRANSEC - Keystream Sequence DIagram..........ccooeverererenenieseeieene e 28
Figure 21 - Bypass Channels Sequence DIagramcccueiuveiieiieeiee e 30
Figure 22 - HashChannel Sequence DIagramccooeiiiiiiiieieiese et 31
Figure 23 - Protocol SEQUENCE DIAQIaMc.veivieiieiie ettt 32
Copyright © 2011 The Software Defined Radio Forum Inc Page v

All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INHQVARON IRSS API Specification
FoRUM WINNF-09-S-0011-V1.0.0
List of Tables
Table 1 - IRSS API USES SErvice INTErfaCecoovviiiiiiiciie et 7
Table 2 - IRSS API UsSES SErvice INTEITaCecooviiiiiie e 8
Copyright © 2011 The Software Defined Radio Forum Inc Page Vi

All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

International Tactical Radio Security Services API
Specification

1 Introduction

The International Tactical Radio Security Services (IRSS) API standardizes a software security
interface for use by the international tactical radio community. In particular, this API is targeted
for deployment in tactical radio systems based on the Software Communication Architecture
(SCA), though that is not necessarily a prerequisite for its use. In its current increment, the intent
of this API is to promote waveform (WF) portability between various radio platforms that
provide the API. As such, the focus of this API is on the security interfaces required to meet
waveform needs. Although working systems require additional platform security interfaces to
fulfill a number of needs, such as keyfill, security policies, etcetera, standardizing such interfaces
does not add to waveform portability. Additionally, it is at the platform level where the variation
is expected to be the highest across the international community, making such standardization
difficult. As such, platform security interfaces will only be detailed where there is overlap with
waveform security interfaces.

The IRSS API consists of several API service groups, as follows:

e The control service group details interfaces used to establish, configure, and otherwise
manage channels for services provided by this API.

e The Infosec service group details interfaces for usage of cryptographic channels and
TRANSEC channels. Cryptographic channels are used for transformation (i.e.
encryption/decryption) of user information between security domains or within a single
security domain. TRANSEC channels are typically used to protect the protocol used for
transmissions (compared with the traffic payload itself).

e The bypass service group details interfaces for usage of bypass channels used to transfer
waveform control information between security domains without encryption.

e The integrity and authentication service group details interfaces for features such as
generating hashes, generating message authentication codes (MACs), generating and
verifying digital signatures, and generating random numbers.

e The protocol service group details interfaces that allow waveforms to interact with
Cryptographic Applications (CAs), using a generic protocol to perform CA-specific
functions. This allows specialized protocols or functions not addressed by the other IRSS
APIs to be performed, such as asymmetric key negotiation, etc.

1.1 Overview

The contents of the document are laid out as follows:
e Section 1, Introduction, contains the introductory material regarding the overview,
service layer description, modes, states and referenced documents of this document.
e Section 2, Services, specifies the interfaces for the component, port connections, and
sequence diagrams.
e Section 3,

Copyright © 2011 The Software Defined Radio Forum Inc. Page 1
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION| IRSS API Specification
FORU M| WINNF-09-S-0011-V1.0.0

Service Primitives and Attributes, specifies the operations that are provided by the IRSS

API.
e Section 4,
Copyright © 2011 The Software Defined Radio Forum Inc. Page 2

All Rights Reserved

WIRELE &S Security Work Group - International Radio Security Services APl Task Group
INNOVATION| IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

IDL details the IDL for the IRSS API.
e Section 5,

Copyright © 2011 The Software Defined Radio Forum Inc. Page 3
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

UML, depicts the component UML and details the data types used within the IRSS API.
1.2 Service Group Descriptions
1.2.1 Concepts and usage overview

While the IRSS API standardizes a number of interfaces for performing security functions on a
radio set, by necessity the underlying algorithms and their specific configuration are intentionally
generic. To bind this generic APl to specific behaviors, the concept of cryptographic
applications (CAs) is used. A CA provides a unique set of services that are specific for a
particular cryptographic protocol or cryptographic algorithm. For example, an “AES CFB” CA
is an example of a generic AES engine that streaming waveforms could utilize, while an
“IPSEC” CA is an example of a complex CA that internally supports multiple algorithms with
per-packet dynamic selection. How CAs become resident in a Cryptographic SubSystem (CSS)
is implementation specific — some CSSs will be prebuilt with all CAs they support, while others
may support the concept of installable CAs. Regardless of the means, a waveform references a
CA by using a platform-specific ID.

Most IRSS services are employed using a multistep process as follows:

Process Applicability Usage
] Allocates CSS resources,
Channel Creation -4~ Applies to all channel types specifies algorithm(s), other
specifics
. . CryptographicChannel and Specifies key and algorithm
Add channel configurations 4 TransecChannel types only (from channel list)

Selects a specific configuration
to use (destroys current channel
context if channel in use)

CryptographicChannel and

Configuration activation -
9 > TransecChannel types only

< Channel Usage > - Applies to all channel types Actual channel use

Channel Destruction > -4— Applies to all channel types Deallocates CSS resources

Figure 1: Channel lifecycle
1.2.2 Platform implementation of interfaces and operations

This standard defines a number of normative interfaces for waveform use to perform security
functions relevant to the waveform. However, across the broad software-radio domain, there is
no universal agreement or standardization on which specific functions should be performed by
waveforms, platforms or possibly both. In the process of forming this standard, a variety of use-
cases were examined, with the union of individual waveform needs considered in determining
which operations and functions to include.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 4
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

At the same time, the security requirements of individual Software Defined Radio (SDR)
platforms may vary, and in the general case, it may be inappropriate for all operations to be
available to the waveform. In such a case, several avenues are available to implementers
realizing the interfaces in this specification:

e Do not implement or connect a specific interface: for example, some platforms do not
allow a waveform to create or manage cryptographic channels — only use them. In this
case, an implementer could choose to not implement the interface at all, or not connect
the interface to a waveform port. In this case, presumably the platform would make the
equivalent capability available to the platform instead, as channels still need to be created
and managed, with the platform passing the channellds to the waveform for use.

e Dissallow one or more operations within an API: In this case, the platform would
either not implement one or more of the operations in an API, or, based on some platform
policy (possibly waveform specific) disallow execution of the operation. In both cases an
appropriate exception would be returned.

High assurance platforms typically implement a variety of policies that govern operation of the
CSS and waveform’s use of security services. As these policies tend to be very domain and
country specific, this standard does not address them, even in a generic fashion. The
implementation of any such policies is assumed to be a radio platform function and not needed
by waveforms themselves.

1.2.3 IRSS API Port Definitions / Connections

Being a broad-spectrum standard, the IRSS API specifies a set of interfaces and their semantics
without standardizing how these interfaces are allocated to components on a given radio set, nor
how these components are distributed across security domains (SDs). SDs provide
compartmentalization of information across cryptographic boundaries, with these boundaries
being separated by a CSS.

In this section, several typical IRSS component port layouts are shown (single and double
security domains), but many other configurations and topologies are possible, with dimensions
spreading across multiple radio channels and multiple SDs. Each radio set implementing these
APIs is expected to detail its specific port layout as part of its design documentation.

Figure 2 shows the port connections for an IRSS component in a single security domain. In this
case, both plaintext (non-encrypted) and ciphertext (encrypted) information are presented
through a common IRSS component. As a result, ports using the bypass module interfaces are
not included as there is “nothing to bypass around”. Contrast this to the double sided case,
where the only way to send control data across the CSS is to use a bypass interface.

In the diagrams below and in this standard in general, port names are provided for reference
only, and not normative.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 5
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

IRSS::Control::ChannelMgmt
IRSS channel_mgmt_provides_port

Management |-t IRSS::Control::KeyMgmt
Service o key_mgmt_provides_port

L
-

IRSS::Control::CertificateMgmt
certificate_mgmt_provides_port

]
A

[1

IRSS::Infosec::CryptographicChannel
encrypt_provides_port

A

IRSS::Infosec::ControlSignals
encrypt_flow_control_uses_port

) J

IRSS::Infosec::CryptographicConsumer,
encrypt_uses_port

) J

IRSS::Infosec::CryptographicChannel
decrypt_provides_port

A

IRSS::Infosec::ControlSignals
decrypt_flow_control_uses_port

) J

WEF Clients
IRSS::Infosec::CryptographicConsumer
decrypt_uses_port

) J

B A B O A

IRSS::Infosec:: TransecChannel
transec_provides_port

A

IRSS]

Key:

IRSS::landA::HashChannel
hash_provides_port

CORBA interface class provided

IRSS::landA::MacChannel
mac_provides_port

SCA "provides" port SCA "uses"” port

|j Examble::lnterface D
Ll
-

_.example_port

IRSS::landA::SignatureChannel
signature_provides_port

A

SS::landA::SignatureVerificationChannel
signature_verification_provides_port

L

IRSS::landA::Random
random_provides_port

A

IRSS::Protocol::Channel
protocol_provides_port

portname
norport interface

A

J_LJ_LJ_LJ_LJ_LAJ_LAJ_LJ CT CT LT T T

IRSS::Protocol::Consumer
protocol_uses_port

) J

Figure 2 - IRSS Port Diagram - Single Security Domain

Figure 3 shows the port connections for an IRSS component in a typical high-assurance, dual
security domain platform that realizes the IRSS API. In this case, the CSS formally separates
plaintext (non-encrypted) information from ciphertext (encrypted) information. The waveform
interfaces to this CSS are through two distinct components, each which implement some parts of
the IRSS APIs. Note that in this example below, the ChannelManagement interface is presented
to the plaintext side only. While this is typical, it is not normative, and other implementations
could place this on the ciphertext side. Note that when compared with the single-sided
arrangement in Figure 2, it becomes necessary to bypass control messages between plaintext and
ciphertext sides. To support this, the Bypass interface is employed.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 6
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION

Key:
CORBA interface class provided
Cryptographic) i
Subsystem SCA "provides” port SCA "uses" port
IRSS::Control::ChannelMgmt H i
channel_mgmt_provides_port D‘ Example::Interface D
IRSS -

_example_port

IRSS::Control::KeyMgmt > E
key_mgmt_provides_port Management
Service
IRSS::Control::CertificateMgmt > e
certificate_mgmt_provides_port portname 7

[IRSS::Infosec::CryptographicChannel |
-

IRSS::Infosec::CryptographicConsumery_ |
| | encrypt_provides_port Lo

[]
| | encrypt_uses_port [
[]
| | [

1 [

o IRSS::Infosec::ControlSignals
encrypt_flow_control_uses_port

IRSS::Infosec::CryptographicConsumer j lIRSS::Infosec::Cryp'[ographicChanneI
decrypt_uses_port decrypt_provides_port

IRSS::Bypass::Consumer -
>

- j
pt_bypass_provides_port = ct_bypass_uses_port
PT Wi IRSS::Bypass:.Consumer IRSS::Bypass::Channel
Clients pt_bypass_uses_port ct_bypass_provides_port
J<

IRSS::Infosec::ControlSignals .
decrypt_flow_control_uses_port "

IRSS::Bypass::Channel

IRSS::Infosec::TransecChannel

transec_provides_port [
IRSS::landA::HashChannel IRSS IRSS CT WF
hash_provides_port Clients
IRSS::landA::MacChannel .
mac_provides_port =
IRSS::landA::SignatureChannel |
signature_provides_port
IRSS::landA::SignatureVerificationChann
signature_verification_provides_port
IRSS::landA::Random - o IRSS::landA::Random]
|:: pt_random_provides_port '\’j h ct_random_provides_port
- IRSS::Protocol::Consumer | IRSS::Protocol::Channel
pt_protocol_uses_port -~ ct_protocol_provides_port
IRSS::Protocol::Channel IRSS::Protocol::Consumer -
pt_protocol_provides_port ct_protocol_uses_port g

Figure 3 - IRSS Port Diagram - Two Security Domains
IRSS API Provides Port Definitions

channel_mgmt_provides_port is provided by the IRSS to allow a waveform or OE
component to create, configure, and manage channels.

key_mgmt_provides_port is provided by the IRSS to allow a waveform or OE
component to request key management operations.

certificate_mgmt_provides_port is provided by the IRSS to allow a waveform or OE
component to retrieve and validate certificates.

encrypt_provides_port is provided by the IRSS to allow a waveform to request that a
packet of data be encrypted by using the transform methods. Other methods allow the
client to query the maximum packet and maximum payload sizes supported by the
interface. The return values from the transform operations and the SpaceAvailable()
method provide for flow control.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 7
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVAROD IRSS API Specification

WINNF-09-S-0011-V1.0.0

decrypt_provides_port is provided by the IRSS to allow a waveform to request that a
packet of data be decrypted by using the transform methods. Other methods allow the
client to query the maximum packet and maximum payload sizes supported by the
interface. The return values from the transform operations and the SpaceAvailable()
method provide for flow control.

transec_provides_port is provided by the IRSS to allow a client to encrypt or decrypt a
TRANSEC payload. It also allows a client to generate keystream.

pt_bypass_provides_port and ct_bypass_provides_port are provided by the IRSS to
allow a client to push a bypass message through the crypto module.

hash_provides_port is provided by the IRSS to allow a client to request the generation of
a hash and have the hash returned.

mac_provides_port is provided by the IRSS to allow a client to request the computation
of a MAC and have the MAC returned. It also allows a client to verify a MAC.

signature_provides_port is provided by the IRSS to allow a client to request the
generation of a digital signature and have the signature returned.

signature_verification_provides_port is provided by the IRSS to allow a client to
request the verification of a digital signature.

random_provides_port, pt_random_provides_port, and ct_random_provides_port
are provided by the IRSS to allow a client to request the generation of true random
numbers or pseudo random numbers.

protocol_provides_port, pt_protocol_provides_port, and ct_protocol_provides_port
are provided by the IRSS to allow a client to push protocol messages to the IRSS.

IRSS API Uses Port Definitions

encrypt_uses_port is used by the IRSS to push data to a client after an encryption
operation successfully completes. This port does not provide for any flow control.

encrypt_flow_control_uses_port is used by the IRSS to inform the client that the
previously paused encryption flow may resume.

decrypt_uses_port is used by the IRSS to push data to a client after a decryption
operation successfully completes. This port does not provide for any flow control.

decrypt_flow_control_uses_port is used by the IRSS to inform the client that the
previously paused decryption flow may resume.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 8
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

protocol_uses_port, pt_protocol_uses _port, and ct_protocol _uses port are used by
the IRSS to push protocol messages to a client.

pt_bypass_uses port and ct _bypass uses port are used by the IRSS to push
information that was bypassed through the crypto module to a client.

1.3 Modes of Service

Not applicable.

1.4 Service States

Not applicable.

1.5 Referenced Documents

[1] JTRS Standard, “Software Communications Architecture (SCA),” JPEO, Version 2.2.2.

[2] RFC 3280, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile”, IETF, http://www.ietf.org/rfc/rfc3280.txt

2 Services

2.1 Provide Services
Table 1 - IRSS API Uses Service Interface

Service Port Name Service Primitives

Group (Interface Used) (Used)

Bypass ct_bypass_provides_port, | IRSS::Bypass::Channel | PushBypass()
pt_bypass_provides_port GetMaxBypassSize()
channel_mgmt_provides_ | IRSS::Control::Channel | CreateCryptographicChannel()
port Mgmt CreateTransecChannel()

CreateBypassChannel()

CreateHashChannel()

CreateMacChannel()

CreateSignatureChannel()

CreateSignatureVerificationChannel()

CreateProtocolChanel()

DestroyChannel()

Control AddCryptographicConfiguration()

AddTransecConfiguration()

RemoveConfiguration()

ActivateConfiguration()

DeactivateConfiguration()

key_mgmt_provides_port | IRSS::Control::KeyMg | UpdateKey()

mt UpdateKeyWithAlgorithm()

GetUpdateCount()

ZeroizeKey()

Copyright © 2011 The Software Defined Radio Forum Inc. Page 9
All Rights Reserved

http://www.ietf.org/rfc/rfc3280.txt

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION

FOR U M

IRSS API Specification
WINNF-09-S-0011-V1.0.0

Service Port Name Service Primitives
Group (Interface Used) (Used)
certificate_mgmt_provides | IRSS::Control::Certific | RetrieveCertificate()
_port ateMgmt GetCertificatelds()
IsCertificateValid()
encrypt_provides_port, IRSS:Infosec::Cryptogr | TransformPackets()
decrypt_provides_port aphicChannel TransformStream()
GetMaxPayloadSize()
GetMaxPacketSize()
Infosec SpaceAvailable()
transec_provides_port IRSS::Infosec::Transec | EncryptTransec()
Channel DecryptTransec()
GenerateKeyStream()
GetMaxPayloadSize()
hash_provides_port IRSS::landA::HashCha | GetMaxDataSize()
nnel Reset()
GetHash()
PushData()
mac_provides_port IRSS::landA::MacChan | GetMaxDataSize()
nel Reset()
GetMac()
IsMacValid()
PushData()
| signature_provides_port IRSS::landA::Signature | GetMaxDataSize()
andA
Channel Reset()
GetSignature()
PushData()
signature_verification_pro | IRSS::landA::Signature | GetMaxDataSize()
vides_port VerificationChannel Reset()
IsSignatureValid()
PushData()
random_provides_port, IRSS::landA::Random | GetPseudoRandom()
ct_random_provides_port, GetRandom()
pt_random_provides_port
Protocol | protocol_provides_port, IRSS::Protocol::Chann | PushMessage()
ct_protocol_provides_port, | el
pt_protocol_provides_port
2.2 Use Services
Table 2 - IRSS API Uses Service Interface
Service Port Name Service Primitives
Group (Interface Used) (Used)
Bypass | ct_bypass_uses_port, IRSS::Bypass::Consumer PushBypass()
pt_bypass_uses_port
Infosec | encrypt_flow_control_uses_port, | IRSS::Infosec::ControlSignals FlowResume()
decrypt_flow_control_uses_port

Copyright © 2011 The Software Defined Radio Forum Inc.

All Rights Reserved

Page 10

SLR A Security Work Group - International Radio Security Services AP1 Task Group
INDQVARAY IRSS API Specification
WINNF-09-S-0011-V1.0.0

FOR U M

Service Port Name Service Primitives
Group (Interface Used) (Used)
encrypt_uses_port, IRSS::Infosec::CryptographicConsumer | Pushstream()
decrypt_uses_port PushPackets()
Protocol | protocol_uses_port, IRSS::Protocol::Consumer PushMessage()
ct_protocol_uses_port,
pt_protocol_uses_port

2.3 Interface Modules

2.3.1 IRSS::Control
2.3.1.1 IRSS::Control::CertificateMgmt Interface Description

The IRSS::Control::CertificateMgmt interface provides the means for waveforms to access
certificates that are currently being managed by the IRSS, and to validate new certificates. A
client can use GetCertificatelds() to retrieve the IDs for the certificates that have been loaded
into, and are managed by, the IRSS. With these IDs the RetrieveCertificate() operation returns
the public portion of the certificate (i.e. it does not include the private key). Waveform clients
will also need to validate received certificates. Assuming the necessary trust anchors have been

previously loaded onto the platform, a client can use ValidateCertificate() to pass in and validate
a certificate received from a peer.

The IRSS::Control::CertificateMgmt interface is shown in Figure 4.

«CORBAINer faces
CertificateMgnnt
(IR=% . Contral)

+GetCertificatelds() ;. Cerificateld>equence
+lzCertifcate’alid(cerificate | OctetSequence) boolean
+RettieveCerificatel certld : Certificateld 1 OotetSequence

- 7 | Y _ -
- y | A
- / N, .
-
s | \ L
CORBASeqUEnCE: 5 \ -
CertificateldSequence 7 ! \ ~
(IRSS Contral) e | y el
! | #CORBAExCception: #=CORBAE ception:
| #CORBAPrimitive: 1 InvalidCertificateld UnrecognizedCertificate
0.1 . unsigned long | {IRSS .Contral) (IRSS Cortral)
"&1 ll'f' | | 1
ZCORBATypedefs : |
Certificateld
(IRSS.Contral) | _TheD:t:ertlﬂ-:l:_:te o] e it e
v certificats ID s vas not in
#CORBASeqUEnCE: the right format
OctetSequence
[CF)

Figure 4 - Control::CertificateMgmt Interface

Copyright © 2011 The Software Defined Radio Forum Inc. Page 11
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

2.3.1.2 IRSS::Control::ChannelMgmt Interface Description

Many operations offered by the IRSS API are performed on channels which define a
communication path between a waveform client and the CSS. Waveform clients use the
IRSS::Control::ChannelMgmt interface to create and manage channels. There are various types
of channels that clients can create:

Cryptographic channels are used to transform (i.e. encrypt and decrypt) data

Transec channels are used to cover protocol or other transmission information

Bypass channels are used to bypass control information through the CSS

Hash channels are used to generate a hash over data

MAC channels are used to generate and verify a MAC over data,

Signature channels are used to generate a signature over data

Signature verification channels are used to verify a signature

Protocol channels are used to send and receive protocol messages to/from the cryptographic
subsystem (for example, as part of a key exchange protocol).

Channels are created on a specific crypto module® using specific endpoints that define the inputs
and, where applicable, the outputs of the channel. The definition for an endpoint is
implementation defined. For example, one could choose to use endpoints for each HW interface.
Alternatively, one could choose to use endpoints for each API instance. When a waveform is
ported between platforms, the values supplied to these parameters will in general need to be
changed.

In many platforms, channel creation will allocate specific CSS resources for use, with
subsequent deallocation of these resources on channel destruction. To be able to determine
which resources are needed, specific channel types use the information supplied with the
createXXX() operation — for example, for cryptographic channels, a list of all required
cryptographic applications and duplexity is required. This pre-allocation guarantees that (in non-
exceptional cases) once channel operation succeeds, all operations on the channel can be
performed.

With the exception of Cryptographic channels and TRANSEC channels, channels are ready to
use once created. Cryptographic channels and TRANSEC channels additionally need to be
configured (via AddCryptographicConfiguration() or AddTransecConfiguration()) and activated
(via ActivateConfiguration()) before they are ready to use. These operations allow fast
switching of configurations within the lifecycle of a channel without risk of an allocation failure.

When created, cryptographic channels and TRANSEC channels establish a context which is
shared between all the configurations on that channel. Switching between configurations on
these channels (via ActivateConfiguration()) will destroy any previous state maintained for the
channel and establish a new state for the new configuration. Multiple cryptographic/ TRANSEC
channels can be created between the same set of endpoints with each channel establishing its

! The concept of a crypto module, which typically refers to hardware function supporting cryptographic functions, is
not standardized, and is considered platform-dependent. Some systems will have only one module, while others
may have multiples.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 12
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION

own context?. Switching between channels will not destroy the state of the previous channel,
allowing that state to be used further.

The lifecycle of channels are summarized in Figure 1, and the UML for the
IRSS::Control::ChannelMgmt interface is shown in Figure 5.

=CORBAE=Ception:
InvalidCertificateld L _ _ _ |The cerificate ID specified is not a
LT CORBATypedefs | [«CORBATypetets | [«CORBATypedets «co;r;ﬂy;:m {IRSS Cortrol) valid certificate ID
Signaturelgorithmid CryptoModuleld Certificateld MacAlgorithmid RS
I (RSS C:rllru\) (IRZZ Cantral) (IR==.Cartral) (IR=S Control) (‘ﬁ) CORBAExceation:
' R * - cvid — — — — |Thekey I specified is not & valid
N N\ \ | ! - (IR=S Control) ke ID
~ \ ‘ / -
“CORBATypedets ~ . b ! ! - s
HashAlgorithmid - Y A | ! o PR, Cxcertion The ch | Il figc iz not
ashAlgorithm ~ - = e channel ld specified is not a
(RSS Cortrol) N . \ | / P e InvalidChannelid — — — —lvalid channel Id or nat the right
~ \ 3 ! - - (Rs5) type of channel for the operation
- ~ : | - - being recuested.
- " h \ P - -
~ ~ N \ I / P - _ «CORBAExueptions
. _ ~ <CORBAINer faces P - . InvalidModuleld L _ _ _ |Thecrypto moduls 1D is not & walid
- ChannelMgmt - - (IRSS Control) crypta module ID.
~ -
~ (RS Cortroly Pl -7
- =CORBAE=Ception:
:g::;i:?;g%%gcrgﬁ;cn%%nns\(j - - - I“‘Ela;g;r:;fnurggm [~ — = — the endpoirt ID is not & walid
+CreateBypassChannel() == Endpoirt 10.
+CreateHashChannel;) -
+CreateMacChannel() *CORBAEception:s
+CreateSignatureChannel) T T T e s = InvalidEndpointPair L _ _ _ |achannelcannct be created
- :g:Zgggﬂ‘iﬂg::r’;'rf‘g(a;'onc"‘an”e‘o - (IR=S Control) betveen the endpoints specified.
IR +DestroyChannel() L -
- +&ddCryptographicContiguration() ~ -~ -3 =CORBAEzCeption:
CORBATypedets . — i i e
e ’;’:,E EI: o P :;g’?‘gae“gg;‘cuu:gﬁg%'“'”() - T InvalidConfiguration | _ _ __[the configuration contains invalid
ki -~ J - - . {IRSS Cortrol) clemerts (2.g. Imvaiid key 10 or
(IRES Contral) - +ActivateConfiguration]) ~ ~ T o= conflicting elements.
- +DeactivateConfiguration() N ~ -~ | B
P r T 0 T~ o <CORBAExceptions
P , | voOAY N . ~ . InvalidConfigurationld | __ [the configuration ID is nat & valid
NN . N - (IRSS Control) configuration [
- s | NN ~ ~
#CORBASequence: P / | \ NN ~ ~ - = #CORBAEzCeption:
CryptoApplicationldSequence | Al N NN ~ < ~ Configurationlnactive L _ _ _ |the configuration being
(IRSS Cortral) 4 | Ay \ NN “ a (IRSS) deactivated iz not an active
index - lang [0.4] / . \ \ AN N “ = configuratan
L] N N
<CORBASIuCts «CORBAStuct AR g
| CryptographicConfiguration TransecConfiguration \ N k. InvalidAlgorithmid L _ _ the algorithm _Specmed iz nat
SN N {IRSS Controf) supported or is not & vl
(RS Contral) (IREE . Contral) \ N N\ N algorthm 1D, Algorithms are akso
+oryptodpplication © Cryptodpplicationid [1] | |+eryptoApplication © Cryptospplicationld [1] | hY \ = used by the Protacol channels
ek : Heyld [1] sk Hevld [1] \ N ~ «CORBAExceptions
¥ , N : N\ 3 ey i— — — — |the key specified is not a valid key
| . N
I fo.1l0.1 s 'f0'1 - ~ (IR=E Control)
/ Fa N / /i «CORBATypedets | N
’ /| N ; / ‘ Endpointid AN Y
- / | \ i ! (IRSS Cortrol) N «CORBAExceptions
§I g I <CORBATYpedets {1 T \ “ChannelCreationError ____|the channel could not ke crested
«CORBATYpedets ff | Keyid / I , \ 5, (IRSS .Controly I (2.0. cryptographic resources are
CryptoApplicationid / | (RS Cortrol) . ‘- . ot available.)
(IRZZ.Contral) 1-’ L ! i
Aot ,:) I I “CORBAExCeptions
+dluplexity / 3 o
R +ather 1 +other 1] «CORBAConstartss InvalidCryptoApplicationld | _ R e e 1
Duplexity <CORE Seruences | ModuleConstants 1FEE R E] valid crypta spalication D
P OctetSequence (IRSS . Cortrol) n
[IRSS.Contral) (CF)]
+SIMPLEX_RX [1]= 0 | +UNUSED ENMDPOINT 1D : Enclpairticl = 0:xFFFFFFFF «COR-BAExm-ap‘Ucfn»
+SIMPLEX T [1] = 1 T Configur rror
+FULL_DUPLEX [1] =2 d] (IRSS Control) - — - - A;o;flgdurat\on could not be
= activated.
+HALF_DUPLEX [1]=3 C«COR‘?AT:p:td_Eixld +reason siring
R cation) For specifying Protocol
(RSZ Cortral) channels with one port, the
UMUSED_ENDPOIMT_ID iz

uzed

Figure 5 — IRSS::Control::ChannelMgmt®
2.3.1.3 IRSS::Control::KeyMgmt Interface Description

Waveform clients use the IRSS::Control::KeyMgmt interface to perform certain key
management operations®. These operations include updating keys, getting their update counts,
and zeroizing keys. The operation UpdateKey() uses a update algorithm implied by the specific

% Waveforms can create as many Cryptographic or TRANSEC channels as needed provided the CSS has sufficient
cryptographic resources to allocate to each channel.

® In Figure 5, function signatures have been elided for brevity. Refer to section 3.4 for details.

* Additional key management operations, including the ability to load, store and tag keys are provided by platform
interfaces not specified in this standard.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 13
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

key, while UpdateKeyWithAlgorithm() is used in specific cases where multiple algorithms
could be used to update a given key.

Waveforms can zeroize specific keys using the ZeroizeKey() operation.

The IRSS::Control::KeyMgmt interface is shown in Figure 6.

#CORBAINterfaces

KeyMgmt
(IRES Contral)

+Updstekey updateleyld : Keyld)
+pdatekeyiithAlgorthm updatekeyid @ Keyld, algorithm : KeyUpdatellgorithmid)
+zetl pdateCount updateCountkeyld © Kevyld 1: unsigned short

+Zeroizeleyl zeroizeKeyld . Keyld)

- # ! \ .~
-~ - A ! \ -
g / f -~
P -~ S 1 b -
f fid i) =y
zCORBATypedefs #CORBATypedefs #CORBAException: #CORBAException: #CORBAException:
KeylpdateAlgorithmlid Keyid Invalidieyld KeylipdateError InvalidieylUpdateAlgorithmid
(IRSS Contral) (IR=S . Contral) (RS .Contral) (RS .Contral) (IRSS Contral)
1 +reazan ;. string !

The key update algorithm Id
The key ID specified is ggi;ﬁ;’;ﬁ”'d I iz ot & valid key Lpdate
not & valid key Id. : algarithim Id.

Figure 6 - Control::KeyMgmt Interface

2.3.2 IRSS::Infosec
2.3.2.1 IRSS::Infosec::CryptographicChannel Interface Description

IRSS::Infosec::CryptographicChannel provides an interface which clients use to submit data for
encryption or decryption. The data itself consists of two sequences of octets, one containing the
information to be transformed and an optional second sequence containing inline bypass
information. The interface supports both stream traffic (using the TransformStream() operation)
or network packet traffic (using TransformPacket() operation).

For each of these operations, there is a corresponding option to determine the maximum data
length that may be submitted in a single call to the TransformStream() or TransformPacket()
operations. For stream traffic, GetMaxPacketSize() returns the largest stream packet (i.e. the
sum of the payload and bypass octet sequences) in octets that the IRSS can accept in a single
TransformStream() call. For packet traffic, TransformPacket() allows multiple packets in a
single call. Each individual packet (i.e. the sum of the payload and bypass octet sequences) must
be less than or equal to GetMaxPacketSize() octets, while the sum of all packets in a single call
shall be less than or equal to GetMaxPayloadSize().

Copyright © 2011 The Software Defined Radio Forum Inc. Page 14
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION

The Transform operations and the SpaceAvailable() operation return a bool indicating if space is
available for another transform request. True indicates that space is available for another
transform request and false indicates that space is not available (i.e. flow pause). Once flow
paused, the client should not push another packet until it receives a flow resume event through
the IRSS::Infosec::ControlSignals interface or SpaceAvailable() returns True when queried.

The IRSS::Infosec::CryptographicChannel interface is shown in Figure 7.

+CORBAINterfaces i N
CryptographicChannel «CORBAException: an attempt was made to use a
(IRSS Infozec) N Configurationinactive — _loryptographic channel that does
- (IRSS) not have an active configuration
+TransformStream] channel : Channelld, som : boolean, eom : boolean, streamPacket © Packet) boolean
+TransformPackets(channel : Channelld, pavload : PacketSequence) boolean
+GethaxPayvload=izel channel : Channelld 1 : unsigned long
+GethaxPacketSizel channel : Channelld) unsigned long L p B
+Spacesvailablel channel : Channeld) : boolean o=y «CORBAException: T el) e e e
InvalidChannelld 5 P
— T T — — —jvalid cryptographic channel Id.
- \ N - - (IRSS)
- ! N -~ = -
- " ~ - -
i ! -
Y ~ ™~ = "
<CORBATypedef: I . ~ «CORBAE=ception: B
Channelld | \ “ ~ N MaxPayloadSizeExceeded | _ _|The entire payl_oad exceeded the
(RSS) y N . (RSS Infosec) max payload size.
! «CORBASeGUENCE: ~ ~
| PacketSequence ~ .
) (IRSS Infosec) ~ ~ -
|
: index : long [0..4] N ~ N
| A
p A packet tagoed as SOM was
-
s ~1 . R received in the middle of a
SCORBAStrUCts ~ BadSomFlag — —previously started message, or a
Packet ~ [IRSS Infozec) packet to start & message was
o received without the SOM flag set.
(IRSS Infozec) “
- - ~

\

~ ~
(0.4 DA N
~— > «CORBAException
+paylo% +hypass MaxPacketSizeExceeded | _ _|One or more packets excesded the
- (RSS Infosec) ma packet size.
=CORBASequUence:
OctetSequence

Figure 7 - IRSS::Infosec::CryptographicChannel Interface

2.3.2.2 IRSS::Infosec::CryptographicConsumer Interface Description

IRSS waveform clients implement the IRSS::Infosec::CryptographicConsumer interface to
receive data encrypted / decrypted via the TransformStream() or TransformPacket() operations
(presumably, but not necessarily in a different security domain). Flow control is not employed in
the interface to the client, which is expected to be able to handle the received traffic, including
any cryptographic preambles / postambles, etc. Any buffering needed as part of an overall
system flow control protocol must be implemented within the client.

The IRSS::Infosec::CryptographicConsumer interface is shown in Figure 8.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 15
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION

FOR U M

#CORBAINer faces
CryptographicConsumer
[IRSS Infozec)

+PushStream(channel : Channeld, som : boolean, eom : boolean, streamPacket @ Packet 3 : void
+PushPackets(channel . Channelld, payload : Packet=equence 1 : woid

-

= | Y
- ~
- | .
1 ~
<CORBATypedets “
Channelld W “~
(IR=S) <COREBASequence:
PacketSequence
[IRSS Infosec)

|
|
index : long [0..%) I
J
-~

| -

1 -~

<CORBAStruCt:
Packet
[IRSS Infosec)

+payl§) +hypass

#CORBASEgUEnCEs
OctetSequence
=

Figure 8 - IRSS::Infosec::CryptographicConsumer Interface

2.3.2.3 IRSS::Infosec::ControlSignals Interface Description

Flow control may be employed in the interface to the IRSS. A client can be flow paused after
pushing a packet to the IRSS::Infosec::CryptographicChannel if that packet fills the queues
managed by the IRSS. The IRSS::Infosec::ControlSignals interface is the mechanism that the
IRSS uses to notify a client that flow can once again resume.

The IRSS::Infosec::ControlSignals interface is shown in Figure 9.

#CORBAINterfaces:
ControlSignals
(IRSZ Infozec)

+FlowwyResumel channel . Channeld 3 ; woid

Figure 9 IRSS::Infosec::ControlSignals Interface

2.3.2.4 IRSS::Infosec::TransecChannel Interface Description

TRANSEC channels provide for TRANSEC encryption/decryption as well as keystream
generation. The TRANSEC related operations must be seeded before use, via a seed parameter.
On the first call to a TransecChannel operation, the seed (whose format is algorithm specific and
not specified in this standard) shall be provided. This seed is used to initialize the appropriate

Copyright © 2011 The Software Defined Radio Forum Inc. Page 16
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION

algorithm. On subsequent calls, if the provided seed length is 0, then the algorithm continues
without reseeding. If the length is non-zero, than reseeding occurs. Clients pass seeds to the
IRSS as CF::OctetSequences. However, a seed is not necessarily an integer multiple of 8 bits.
Therefore, the number of seed bits must be passed to the IRSS as a separate parameter.

The IRSS::Infosec:: TransecChannel interface is shown in Figure 10.

#CORBAINerfaces
TransecChannel
(IRZS Infasec)

+EncryptTransec] channel : Channelld, seed : OctetSequence, numSeedBits | unsigned long, inout payload : OctetSeguence) vaid

+DecryptTransec) channel : Channelld, seed ; OctetZequence, numSeedBits © unsigned long, inout payload : OctetSequence) woid
+zenerateleyStream(channel - Channelld, seed © OctetSequence, numSeedBits - unsigned long, numkeyStreamBits - unsigned long) ;. OctetSequence
+GethaxPayloadSizel channel : Channelld) unsigned lang

T -~ s T -
- - . S
.- - p s | . ~
<CORBATypedets £ - - ! N -~
Channelld .- © W 5
(IRSS) - <CORBAException: <CORBAException: <CORBAExCception:s <CORBAException:s
- - BadTransecSeed InvalidChannelld MaxPayloadSizeExceeded Configurationlnactive
4 (IRSS Infosec) (IRSS) (IRSS . Infosec) (IRSS)
<CORBASEqUEnCE:
OctetSequence I I |)
(CF) | | | '
| | :
| [| :
II
| | |
; an sttempt was made to use
The seed provided doss | | The channel Id The payload a TRANSpéC channel that
not contain &t least supplied iz not 5 valid exceeded the max does not have an active
EgthEEdEmS of seed TRAMSEC channel Id. payload size. configuration
a.

Figure 10 - IRSS::Infosec:: TransecChannel Interface
2.3.3 IRSS::Bypass

The IRSS::Bypass::Channel and IRSS::Bypass::Consumer interfaces are shown in Figure 11.
The combination of the two are used to move non-traffic data between security domains without
encryption or other transformation, with the typical use in a system being to pass inter-
component waveform control flows across the CSS divide.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 17
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INDQVARAY IRSS API Specification
F o RrR U M WINNF-09-5-0011-V1.0.0
2CORBAExceptions The ch lid
5 & channel i
<CORBAIterfaces _) InwalidChannelld - lopecified is ot o
Channel L — — - RSS) walicl bypass
(IRSS Bypass) chanrel i
+PushBypass(channel : Channelld, bypass | OctetSequence b woid
+zethaxBypassSizel channel : Channelld 1 unsigned long L _
= T = T T = 4 «CORBAExceptions The max hypass
V. v = MaxBypassSizeExceeded - — a7z yyas
- I. - (IRSE Bypass) exceededd
L L R
<CORBATypedefs #CORBASeqUence: -~ -
Ch(?;g“s")"d O“E‘SEEF“;"E“"E HeCORBAException:
= 7 Begolation | —the requested bypass
~ URSS Bypass) operation violates the bypass
~ ! policy for the channel.

«CORBAINterfaces
Consumer
(IRSS Bypaszs)

+PuzhBypass(bypass | OctetSegquence 1 waid
|
|

Wavetorm clients provide the IRSS::Bypazs:
Consumer interface. This interface allows
the Radio Security Service to push bypass
messages to a wavetorm client.

Figure 11 — IRSS::Bypass::Channel and IRSS::Bypass::Consumer Interfaces
2.3.3.1 IRSS::Bypass::Channel Interface Description

The IRSS provides the IRSS::Bypass::Channel interface. Waveforms use the interface to push
bypass messages through the crypto module. Bypass traffic is expected to be low rate, and
therefore, flow control is not built into the interface. However, there still exists a maximum
bypass size allowed for any given bypass message, with an accessor being provided by the API
for waveform clients to query the maximum bypass size. This maximum bypass size represents
physical system limitations and not bypass policy restrictions (such policies are defined by the
platform, and typically enforced by the cryptographic subsystem, but are not accessible by the
standardized waveform APIs).

2.3.3.2 IRSS::Bypass::Consumer Interface Description

The IRSS::Bypass::Consumer interface is used by a waveform to receive bypass flows from the
IRSS that were originated from a IRSS::Bypass::Channel interface in a different security
domain. There are no inherent flow-control provisions supported by this interface — it is
assumed that the stream is consumed by the waveform. This does not preclude the waveform
from employing other mechanisms outside the range of this specification (e.g. waveform internal
flows, etc).

2.3.4 IRSS::landA

There are several different IRSS::landA (Integrity and Authentication) channel types that are
used to carry out common I&A functions. Except for random numbers (see below), the
algorithms used to perform these functions are not standardized in this specification, but rather
are provided by the IRSS implementation. When a waveform creates the IRSS::landA channel

Copyright © 2011 The Software Defined Radio Forum Inc. Page 18
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

(see section 2.3.1.2), it specifies the desired algorithm. The IRSS::landA interface UML is
shown in Figure 12, with descriptions of the individual interfaces in the following subsections.

In addition, the IRSS::landA module contains an interface related to the generation of random
numbers. As the algorithm is standardized here (pseudorandom) or not applicable (true random),
a channel concept is not used. This interface is described below in section 2.3.4.6.

2.3.4.1 IRSS::landA::Channel Interface Description

Waveforms use the IRSS::landA channels to perform a variety of 1&A functions. In most cases,
use of such channels require supplying the IRSS with a quantity of data (typically using multiple
calls, as the data packet size is limited), and then when complete, asking for information back
which constitutes, the hash, signature or MAC.

The IRSS::landA::Channel interface is an abstract base interface that allows clients to push data
to the IRSS. Data is pushed in chunks not to exceed the maximum data size as defined by
GetMaxDataSize(). Actual concrete interfaces then specialize this interface with specific
operations for retrieval of outputs. These are detailed in subsequent subsections.

Once one of the specialized concrete channels have been created, a client uses
GetMaxDataSize() to find the maximum amount of data that can be passed in a call. They then
can push multiple packets into a channel using PushData() When done, the specialized
operations (see following sections) can be used to retrieve the results. Once done, a channel can
be cleared and prepared for reuse using the Reset() operation. In this way, waveforms do not
need to destroy and recreate the channel when multiple functions need to be accomplished.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 19
All Rights Reserved

WIRELESS
INNOVATION|

Security Work Group - International Radio Security Services AP1 Task Group
IRSS API Specification

The channel Id specified
iz not & walid channel Id

WINNF-09-S-0011-V1.0.0

A client made an sttempt
to puzh data that

-
-

-

Concrete interface that allows a client to |

generate a signature. A client can retrieve |
a signature after pushing all the data to be |

signed ta the IRSS.

'* e

4 -~

«CORBAINer faces

SignatureChannel

(RSS Janca)

2.34.2

IRSS::landA::HashChannel is an interface that allows a client to use an IRSS::landA::Channel
for generating hashes. The hash is performed using the algorithm specified at channel creation.

+GetSignaturel channel : Channeld) OctetSequence

y
| «CORBAExceptions k=

e

InvalidState
(IRSS Janda)

]

the system iz not in the correct
state to complete the operation. For
example, data has not yet been
pushed to generste a result.

or net the right type of exceeded the maximum
channel for the operation allawable size
heing requested. 2
| |
=CORBASeqUeEnce: «=CORBATypedefs %CORBAException: #CORBAException:s
OctetSequence Channelld InvalidChannelld MaxDataSizeExceeded
(CF) (IRSS) (IRSS) [IRSZ land &)
™ 3 I
~ T e
A} / V
~ \ 4
Abstract baze interface that allows . \ /
clients to push data tothe RSS. Data . / < the system is not inthe correct
iz pushed in chunks not to excesd ~ \ A state to complete the operstion. the signature given is not
the maximum data zize as defined by ~ \ / e For example, data has not yet the: right sizedformat.
GetMaxDataSizel). - ~ \ / - been pushed to generate a result.
I /
#CORBAINerface:s .]
o, i L I
Concrete interface that allows a client (IRS;':;ZA) | /
to use a channel for genersting hashes. = *CORBAExceptions #CORBAExceptions
A cliert can retrieve a hash result after i i .
3 +PushDatal channel : Channelld, data : OctetSeguence) waid InvalidState InvalidSignature
pushing all the data to be hashed to the . K ; -
Res. +GetMaxDatasize(channel | Channelld)@ unsigned long (IRSS landa) (RSS landa)
+Rezet(channel : Channelld 1 woid
£ b
\ 7 T ~ -
- |
\ " | | \\ / -
<CORBAINtertaces [P
HashChannel | I|]
(RSS Janda) '|I «CORBAINterfaces
1 SignatureVerificationCh
+ZetHashi channel : Channeld) : OctetSeguence || (IRSS landa.)

! +=Signature’alic] channel : Channelld, signature | OctetSequence 1 boolean

Concrete interface that allow s a client to verify & signature. &
client can verify a signature after pushing all the data to be
zigned to the IRSS. A client passes the signature to match to the
IRES and gets the result via the lzSignature’alid() operation.

«CORBAINterfaces:
MacChannel
(IRS3 landA)

+3etMact channel : Channelld) OctetSequence
+Hamacalidl channel : Channeld, mac : OctetSequence) boolean

Concrete interface that allowes a client to use a channel
to compute and verify & MAC. A client can retrieve a
MMAC after pushing all the data to the IRSS or a client
can verify a mac by passing in the mac to match.

Figure 12 - IRSS::landA::Channel Interfaces

IRSS::landA::HashChannel Interface Description

~

)
«CORBAException:
InvalidMac
(IRSS land)

the mac given is not
the right sizefformat.

A client can retrieve a hash result after pushing all the data to be hashed to the IRSS.

2343

IRSS::landA::MacChannel is an interface that allows a client to use an IRSS::landA::Channel to
compute and verify a MAC. The MAC is performed using the algorithm specified at channel

IRSS::landA::MacChannel Interface Description

Copyright © 2011 The Software Defined Radio Forum Inc.
All Rights Reserved

AN

Page 20

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

creation. A client can retrieve a MAC after pushing all the data to the IRSS or a client can verify
a MAC by passing in the MAC to match.

2.3.4.4 IRSS::landA::SignatureChannel Interface Description

IRSS::landA::SignatureChannel is an interface that allows a client to generate a signature. The
signature is performed using the algorithm specified at channel creation. A client can retrieve a
signature after pushing all the data to be signed to the IRSS.

2.3.4.5 IRSS::landA::SignatureVerificationChannel Interface Description

IRSS::landA::SignatureVerificationChannel is an interface that allows a client to verify a
signature. A client can verify a signature after pushing all the data to be signed to the IRSS. A
client passes the signature to match to the IRSS and gets the result via the IsSignatureValid()
operation. The signature is performed using the algorithm specified at channel creation.

2.3.4.6 IRSS::landA::Random Interface Description

IRSS::landA::Random is an interface that can be used to generate true random numbers (via
GetRandom()) or pseudo random numbers using a seed (via GetPseudoRandom()).

The IRSS::landA::Random interface is shown in Figure 13.

«CORBAIMerfaces
Random
(IRSS lands)

+GetPseudoRandomi seed : unsigned short, numBytes | unsigned short) OctetSequence
+ZetRandom numBytes © unsigned short 1 OctetSequence

Wy
CORBASEqUENCE:
OctetSequence
[CF)

Figure 13 - IRSS::landA::Random Interface
2.3.5 IRSS::Protocol
2.3.5.1 IRSS::Protocol::Channel Interface Description

Protocol channels, while typically used to exchange a series of algorithm-specific protocol
messages to the IRSS®, can be used in other ways as well — essentially providing a generic
exchange between the waveform and the IRSS, which in turn is interpreted by the associated
Cryptographic Application. Messages have a maximum size as defined by the protocol
definition.

® An example would be when negotiating an asymmetric key for IPSEC, etc — where the IRSS is used to perform
transformations in generating IPSEC messages.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 21
All Rights Reserved

WIRELESS

INNOVATION|

The IRSS::Protocol::Channel interface is shown in Figure 14.

«COREBAINterfaces «CORBAException:
Channel InvalidChannelld
[IRSS Protocol) - = (IRSS)

+PushMessagel channel : Channelld, message OctetZeguence 1 void

= = «CORBAExCeption:
- MaxMezsageSizeExceeded |
- Il (IRSS Protocal)

! 4 ~ -
/ \ ~ =N
~ «CORBAException:
InvalidMessage
[IRSS Protocal)

L&

i o=0cr 2 CORBASequUEnCE: ™~

Channelld .
(RSS) OctetSequence -

(CF) RS

S
i
=Y

#CORBAException:
UnrecognizedMessage
[IRSS Protocol)

Figure 14 - IRSS::Protocol::Channel Interface

2.3.5.2 IRSS::Protocol::Consumer Interface Description

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification

WINNF-09-S-0011-V1.0.0

B >

| The channel I0 specified is
not a valid protocol
channel 1.

B >

| The maxithum command
size has been exceeded.

B

the WF client passed a
—jcommand that is nat wvalic
far this protocol or iz not
valid at this time.

the WF cliert passed a
command that iz not
recogized by the RSS.

Waveform clients provide the IRSS::Protocol::Consumer interface. The IRSS uses this interface

to push protocol messages to the client.

The IRSS::Protocol::Consumer interface is shown in Figure 15.

#CORBAINterfaces
Consumer
(IRSS Protocol)

+PuzhMezzagel channel . Channelld, message ;. Octet=equence 1 ; woid

- i
. .
L =
#CORBATypedets #CORBASEqUENCE:
Channelld OctetSequence
[IR=5) [CF)

Figure 15 - IRSS::Protocol::Consumer Interface

2.4 Sequence Diagrams

2.4.1 Two Security Domain Cryptographic Channel

Description

This sequence diagram shows how to create and use a single cryptographic channel for
encryption and decryption of packets in a two security domain implementation. The sequence

includes the use of the flow control aspects of the API (see steps 11 — 14).

Copyright © 2011 The Software Defined Radio Forum Inc.
All Rights Reserved

Page 22

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
(NBQVARION IRSS API Specification
WINNF-09-S-0011-V1.0.0

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution
there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions
The CSS has resources available to allow the creation of the cryptographic channel.
Post-conditions

The cryptographic channel is active and ready to process more data.

[CWF - PT Side| | :mss| | SWF - CT Side

1: CreateCryptographicC hannel(cryptohdoduleld, ptEndpointld,
ctEndpointld, cryptoApplicationUst, duplexity)

via ChannelMgmt interface: L
1-2) Create a cryptographic channel. 2: eryptoChannelld | |

This allocates cryptographic resources for

the channel and returns the channel Id. /TO: J
3-4) Add configurations to the channel. OB

Since multiple configuration can be added, [while more configurations)

ihoifrige:t:::iso: :ggfelgfuatlon i 3: AddC ryptographi on‘figura.tion(cryptoc hannelld
5-6) Activate the configurations o that [C ryptoAppld;Key|d:D uplexity,OtherCfgData))

the channel can be used to rarsform data i

using that configuration. 4: cryptoCfgld

via the CryptographicChannel interface: §: ActivateConfiguratior(eryptoCfgld, activationD ata)
7-10) retrieve the max packet and FX

payload sizes. Individual packets and the 6: "I |

entire payload cannot exceed these limits .

inany one call. g . EL
11-12) request the IRSS to encrypt aPT 7 GetMaxPacketh cryptoC hannelld)

payload. The return value indicates that 8: maxPacketSze |

space & available for additional payloads.

9: GethaxPayloadSize(eryptoC hannelld)

via the CryptographicC onsumer interface: 10: maxPayloadSizq |
13) the IRSS pushes the encypted
payload to the waveform. 1: TransformPack£4(cryphC hannelld, ptPacketSequence)
) 12: true 'l I
via the CryptographicChannel interface: 3 Pus hPad(ets(cryptIoChannelld. ctP acketSequence)
14-15) request the IRSS to decrypt aCT)

payload. The return value indicates that
space & available for another payload

via the CryptographicC onsumer interface:
16) the IRSS pushes the decrypted

payload to the waveform 14: TransformP ack ets(eryptoChannelld, ctPacketSequence)

| r 15: true

16: PushPadcets(cryptoChannelld, ptPacketSequence)

-

Figure 16 - Two Security Domain Cryptographic Channel Sequence Diagram

Copyright © 2011 The Software Defined Radio Forum Inc. Page 23
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
Ut oles G OF by WINNF-09-S-0011-V1.0.0

INNOVATION

2.4.2 Single Security Domain Cryptographic Channel
Description

This sequence diagram shows how to create and use a single cryptographic channel for
encryption and decryption of packets in a single security domain implementation. The IRSS will
need to provide both PT and CT ports implementing the CryptographicChannel interface. The
WEF will need to provide both PT and CT ports implementing the CryptographicConsumer
interface.

Pre-conditions

The CSS has resources available to allow the creation of the cryptographic channel.
Post-conditions

The cryptographic channel is active and ready to process more data.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 24
All Rights Reserved

WIRELESS

UNNVATUN}

1: CreateC ryptographicChannel

Yia ChannelMgmt interface:

1 -5) Create a channel, add a
configuration, and activate the
configuration.

Via CryptographicChannel
interface:

7 -8) The WF queries the
IRSS forthe maximum packet
size it can support. The
packets being transformed
must not be larger than this
size.

9-10) The WF pushes a data
message fragment to be
enctyptedto the PT provides
crypto channel pott ofthe
IRSS. Itisthe firg fragment of
the message so the SOM flag
is set.

11) The encrypted data is
pushed tothe CT crypto
consumer port of the WF .

12-14) The second oftwo
message fragments is
encrypted. The EOM flag is
set. The same ports are used
asin steps9-11.

15-16) The WF pushes a
complete data message to he
decrypted to the CT provides
crypto channel pott ofthe
IRSS. Both the SOM and EOM
flags are set.

17) The decrypted data is
pushed tothe PT crypto
consumer port of the WF.

Security Work Group - International Radio Security Services APl Task Group
IRSS API Specification
WINNF-09-S-0011-V1.0.0

T WF

I%ptoModule. ptEndpoint, ctEndpoint, cryptofpp, HALF_DUPLEX

2: chanld

3: AddCryptographicC onfiguration(chanld, s reamCfg)

4: streamCfgld

5. Activ ateC onfiguration(-, -)

6: void

7: GethaxPadketSize(-)

3: max packetsize

9 TransfqrmStream(chanld, som, leom), ptPayload)

10: true

11: PushStream(chanld, som, !eom ptPayload)

12: TransformStream(chanld, 'som, eom, ptPayload)

13: true

14: PushStream(chanld, & om, eom, ptPayload)

18: TransformStream(chanld, som, eom, ctf ayload)

'~

16: true

17: PughStream(chanld, s om, eom‘.pIPayload)

T

Figure 17 - Single Security Domain Cryptographic Channel Sequence Diagram

Copyright © 2011 The Software Defined Radio Forum Inc. Page 25

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

2.4.3 Stream Multi Channels
Description

This sequence diagram shows a waveform that needs to process two simultaneous incoming
streams. Each stream may have its own algorithm and/or key. The waveform creates and
configures a channel with a single configuration based on learning details of each incoming
stream. The cryptographic state is kept with each cryptographic channel. This allows the two
streams to be alternately processed through the crypto, each keeping its own overall message
state.

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution
there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions
The CSS has resources available to allow the creation of the two cryptographic channels.
Post-conditions

The cryptographic channels have been destroyed, their state cleared, and their resources are
available for use.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 26
All Rights Reserved

sl | Security Work Group - International Radio Security Services APl Task Group

INNOVATIGN, IRSS API Specification
WINNF-09-S-0011-V1.0.0

T WF- PT Side | :mssl | T WF- CT Side |
1: Wleams stream 1 incoming

2: CreateCyptographic Channel(cryptohfodule, ptEndpoint! , ctEndpoint1, cryptofpp,
Vfia Channelgmt Interface: FULL_DUPLEC)

1) Waveform learns a
stream is going to arrive

|

2-7) WF creates a channel 3 stream1Chld =| |
and prepares for use. [Blue
channel] 4: AddCryptographicCond gt,H‘lion(stream1 Chid, stream1 Cfg)

5: stream1Cfgld il
6: Activate Confguration (stre_a{m Cfgld, activation Oata)

7: void [|
B: Transfm Stream(stream E}-'_‘IEI som, leom, aData)
Vfia CryptographicC hannel and 6ihie
CryptographicC ors umer &
interfaces: 1 0: PushS$tream(stream1Chld,|som, kom, ptData}
8-13) Stream 1 traffic &
decrypted.

11: Transform Smeam(streamul:hld ,lsom, leom, Iom)

-
el

12: true
13: PushStreamistream1Ch | !som, leom, ptDag)

14) W aveform learns a
second simultaneous stream
& going to arrive

14: Wifleam s stream 2 also|incoming

-

15: CreateC raphicChannel(cryptobodule| ptEndpoint2, @ Endpoint2, crypto. 3
i f%()p (crypt ptEndp ryptoApp

B

16: stream2Chid "

-

Vfia ChannelMgmt interface: : |
15.20) WF c?eats Snd 17: AddCryptographic Configuration(stream2 Chld, stream2 CH)

prepares asecond, X 18: stream2 Cfgld
concurrent channel. (N ote this =
could have a different 19: Activate Confguration(stream2 Cfgld, activationData)
destination endpoint) [Green 5
channel] : 20: wid |
21: Transform $tream(stream2 Chid, som, leom, ctData)

Vfia CryptographicChannel and 23: tue s
CryptographicC ors umer 3: PushStream(stream2Ch d, som, leom, ptData)
interfaces:

21-23) Stream 2 traffic
arrives =

24-26) Stream 1 traffic with
EOM packet arrives. 24: Transform Stream(stream1 Ch i, !som, eom, ctData)

25: true

26: (stream1Chld, 'som, eom, ptData, -)

”

=

#: DestroyChannel(stream1Chlid)

: . 28 wid “I5l
Vg??;;)nlie:i%m;r:e:ua;e. 29 : Transform Stream(stream2

tears dawnthe channel 1

W, lsom, eom, ctData)
30: true
31: PushStream(stream2Ch | !som, eom, pt Dat3

Vfia CryptographicChannel and
CryptographicC ors umer

interfaces: L
29-31) Stream 2 finally ends.

32: DestroyChannel (stream2 Ghld)
33:wid 1]

Vfia Channeltgmt interface:
32-33)second channeltorn

-

down.
Figure 18 - Stream Multi Channels Sequence Diagram
Copyright © 2011 The Software Defined Radio Forum Inc. Page 27

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

2.4.4 TRANSEC - Encrypt/Decrypt
Description

This sequence diagram shows how to create and use a single TRANSEC channel for encryption
and decryption to cover and uncover a data stream. The algorithm gets reinitialized whenever a
new seed is passed in. The payload parameter of the encrypt and decrypt operations is an inout
parameter.

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution
there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions

The CSS has resources available to allow the creation of the TRANSEC channel. The bypass
channel has already been created and is available for the waveform to use.

Post-conditions

The TRANSEC channel is still active and able to encrypt and decrypt.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 28
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
(NBQVARION IRSS API Specification
WINNF-09-S-0011-V1.0.0

| WE - PT Sidel :IRSS {WF - CT Side
ntld, tr3

1: CreateTransecChannel{cryptoModuleld, endpoi transecApp, HALF_DUPLEX)

Via ChannelMgmt inte face: 2: transecChlld
1) Create a Transec channel.
This allocates the

cryptographicresources and 3. adq ItansecC onfiguration(trarsecC hid, cfg)
returns the channel |d to use. L

4: encDecCfgld

3 - 6) Add and adivate the

Transec configuration
5: ActivateC onfiguration(transechal , data)

6: void

Via BypassChannel inteface:

7 -8)PT side bypassesthe 7: PyshBypass(bypassChid, transeqChld)
transecChid to CT side. The
creation ofthe bypass

channelis not shownh 8: PughBypass(bypassChld, transecChld)
Yia TransecChannel inteface: ot GetMaxPayloadSize(transecChld)

9 -10) Get the max payoad «

size for the channel. Packets 10: max payload size

to be encrypted [decrypted
via this channel cannot

exceed this max size. 11: EncrypiTiars ec(transecChld, seed, numBits, ptData)
1) E_ntr)fm a packet, 12: EnciyptTransec(transecC hid, empty| O, ptD ata)
passing in seed and number o

of seed hits. The algorithm

iz intialized with the seed. 13: DecryptTransec(trars ecChld, seed, numBits, ctData)
12) Encrypt another packet

passing in an em pty seed 14: DecyptTransec(transecChld, empty| 0} ctD ata)

sequence and num SeedBits
of0. Thiswill continue
processing without
re4nitializing the algorthm .

15: EncrypiTiars ec(transecChld, seed, numBits, ptData)

13 -14) Decrypt instead of
encrypt. Similar to steps 11
and12. L

15) Encrypt another packet
while specifying a seed.
This will re-initialize the
algorithm again.

Figure 19 - TRANSEC - Encrypt/Decrypt Sequence Diagram
245 TRANSEC — Keystream
Description

This sequence diagram shows how to create and use a single TRANSEC channel for generation
of key stream. The key stream generation algorithm gets reinitialized whenever a new seed is
passed in. Both the size of the seed and the requested size of key stream to be generated are
specified in number of bits. The seed itself and the returned key stream data are
CF::OctetSequences. The number of bytes in the returned key stream may be padded out to be a
multiple of the algorithm’s block size.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 29
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
(NBQVARION IRSS API Specification
WINNF-09-S-0011-V1.0.0

Note that the IRSS is shown as a single entity for simplicity. In a two security domain solution
there would be an IRSS instance on the PT side and another on the CT side of the system.

Pre-conditions

The CSS has resources available to allow the creation of the TRANSEC channel. The bypass
channel has already been created and is available for the waveform to use.

Post-conditions
The TRANSEC channel is still active and able generate keystream.

:WF-PTSideI :IRSS :WF - CT Side l

1: CreateTransecChannel{cryptohdoduleld, endpointld, trars ecApp, HALF_D UPLEX)

Yia ChannelMgmt inte face: 2 transecC hild
1) Create a Transec channel.
This allocates the

cryptographicresources and 3. addTransecC onfiguration(transecC hid, cfg)
returns the channel ld to use. >

4: keyStreamCfgld

3 -6) Add and activate the
Transec configuration for
keyStream generation. &: ActivateC onfiguration(k ey StreamCfgld, data)

Lo

6: void

Yia BypassChannel inteface:

7 -8)PT side bypassesthe 7: PushBypass(bypass Chld, transedChid)
transecChld to CT side. The
bypasschannel was

previously created. 8: PughBypass(bypassChld, transecChld)

Via TransecChannel inteface: 9: GenerateKeyStreamitransecChld, seed, numSeedBiE, numKeyStreamBits)
9 -10) Reques key stream to

be generated. The seed is 10: new keystream sequence

usedto initialize the algorithm.
The requested number of

bits is returned... 11: G enerateKeyS Leam(transecChld. empty, 0, pumKeyStreamBits)
11 -12) Request more key 2t continued keystream sequerjcs

stream, passing in an em pty
seed sequence and ;
numSeedBits = 0. This will 13: GenerateKeyStre3 mgtansecChld. seed, numSeedBits, numKeyStreamBits)
continue generating key
stream hits from where it lett
off.

14: newkeystream sequence

13 -14) Request more key
stream, this time passing in a
newseed. The algorithm is
re4dnitialized with the new —
seed.

Figure 20 - TRANSEC - Keystream Sequence Diagram

Copyright © 2011 The Software Defined Radio Forum Inc. Page 30
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
Ut oles G OF by WINNF-09-S-0011-V1.0.0

INNOVATION

2.4.6 Bypass Channels
Description

This example shows the full bypass channel lifecycle. A single bypass channel provides for
bypassing of information sourced from security domain A and sunk to security domain B. To
support two way bypass traffic between two security domains requires a pair of bypass channels.
For this example PtToCt and CtToPt bypass channels are created and used. Each bypass
message has to be smaller than the maximum size allowed on the platform. A client determines
this value by calling GetMaxBypassSize(). The bypass policy being enforced by the
cryptographic subsystem may impose further constraints on the bypass traffic.

Pre-conditions
The CSS has resources available to allow the creation of the bypass channel.
Post-conditions

The bypass channels have been destroyed and the resources have been released.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 31
All Rights Reserved

WIRELESS

ﬂNNVATUNi

Via ChannelMgmt interface:
1-2)PT side WF component
creates a bypass channel for
PTto CT bypass.

5 -6)PT side YWF component
creates a bypass channel for
CTtoPT bypass.

Via Bypass:Channel interface:

3-4)(and 9-10) Before
pushing a bypass message,
the waveform must query the
max bypass size from the
IRSS. This size cannot be
exceeded by any one bypass
messasye.

7IPT side WF pushes a
bypassmessagetothe PT
side IRSS ingance withthe
ctToPtld.

Via Bypass:Consumer
interface

8)IRSS pushes bypass
message to CT side WF.

11 CT side WF pushesa
bypassmessagetothe CT
side IRSS ingance.

Via Bypass:Consumer
interface

12) IRSS pushes bypass
message to P T side YWF .

Yia ChannelMgmt interface:
13 & 14) The bypass channels
are destroyed

IRSS

Security Work Group - International Radio Security Services APl Task Group

API Specification

WINNF-09-S-0011-V1.0.0

I CWF - PT Sidel : IRSSI D WF - CT Side
1: CreateBypassChannelcryptododuleld, ptSide, ctSide)
2: ptToCtChld
GethdaxBypass Sze(ptToCtC Hid)
4: max bypass sze
§: CreateBypassChannel(chyptododulel
d, ctSide, ptSide)
G: ctToPtld
7: PushBypass(ptToCtChld
bypass - ctToPtld) |
8: PushBypass(bypass)
T :I:.% Geth axBypassSize(ctToPtlg)

10: max bypass size

11: PushBypass(ctToPtC hld, bypass)

1_%: PushBypass(bypass)

13: DestroyChannelptToCtChld)

14: DestroyChannel(ctToPtChid)

Figure 21 - Bypass Channels Sequence Diagram

Copyright © 2011 The Software Defined Radio Forum Inc.
All Rights Reserved

Page 32

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION| IRSS API Specification
FORU M| WINNF-09-S-0011-V1.0.0

2.4.7 Hash Channels
Description

At channel creation time, the hash algorithm (e.g. MD5, SHA-256, etc.) is selected along with
the crypto module and endpoint. The waveform client needs to query for the maximum data size
that can be handled by the channel since this value will be platform specific. The client then
breaks up the data to be hashed into multiple chunks smaller than the maximum data size and
pushes the data to the hash channel. The GetHash() method returns the hash of the data
processed since the channel was created or last reset.

Pre-conditions
The CSS has resources available to allow the creation of a Hash Channel.
Post-conditions

The Hash Channel is active and ready to process more data.
Via Channeltgmt interface:

l :WF - PT Sidel :IRSSI
1-2) Create a Hash

Channel. This allocates 1: CreateHashC hanngl(cryptohoduleld, enclp intld, hashAlgorithmld)
cryptographic resources for 2. hashChannelld l |

the hash function and

returre the channel ld to
use. 3: GptpaxD ataSize(has hC hapnelld)

™

4 maxD ataSze | |

ViaHashChannel interface:
3-4) Get the max data size

ot

forthe channel. D ata loo

packets pushed to the

channel cannot exceed this [while mone data]

maxsize. 5: FughDatathashChannelld,|data)
5) Loop to push the data »

to be hashedto the IRSS

using the channel Id

returned in step 2.
6-7)When all the data has L

been pushed, the hash
results can be retrieved. g: GetHash(hashChannsl i

~—

7: hash |

T

Figure 22 - HashChannel Sequence Diagram
2.4.8 Protocol
Description

This sequence diagram shows a possible example of Protocol channel usage. This example is a
subset of required operations for generating a session key using IKE. After the channel is

Copyright © 2011 The Software Defined Radio Forum Inc. Page 33
All Rights Reserved

WIRELESS

INNOVATION|

Security Work Group - International Radio Security Services AP1 Task Group
IRSS API Specification

WINNF-09-S-0011-V1.0.0

created, protocol messages are passed between the WF component and IRSS via the
PushMessage() method. This example is not a normative description of how an IKE protocol

channel would work.

Pre-conditions

The CSS has resources available to allow the creation of the Protocol Channel.

Post-conditions

The Protocol Channel is still active and able to process messages.

l :WF-PTSidel

:| CreateProtocolChannel cryptododuleld, end

Viathe Channelbgmt interface:
1-2) Create a protocol channel.
This initialzes the protocol for that
channel using the s pecified protocol
ID and returns a channel ID to use.

Viathe Protocol:Channel interface:
3) Send a protocol command to

startan IKEsession. The client

s pecifies the Diffie Hellman group

number to use for the session. 4: Pushh

Viathe Protocol:Corsumer interface:
NThe IRSS pushes the results of
the IKE initiation in a protocol status

message. g

§) the client exchanges k ey
parameters with its remote IKE peer.

iathe Protocol:Channel interface:

6-7) The clientsends the key
parameters tothe IRSS and requests
the deriviation ofkeys.

iathe Protocol Corsumer interface:
8) The IRSS returns the res ulting
k ey |ds to the client in a protocol

status message. a: Phs

-

OHUSED_ENDFOINT_ID, TPsecFrofcoll
2: protocolChannelld

=

3: Pushhessage(protocolChannelld,

"StatlkeSession: DHGroupNumber™)

Eja

hange Key Parameters with the IKE peer

]

thhessage(protocolC hannelld, "SeteyPara
r,Nr, SAr, SPIi, SPIr, lkeSessionld™)

lessage(protocolChannelld, DHValue, Ni, ke
-

¥

Ll

Pus hhessage(protocolChannelld, "D erive Keys

)
-

Figure 23 - Protocol Sequence Diagram

Copyright © 2011 The Software Defined Radio Forum Inc.

All Rights Reserved

hiessageprotocolChannelld, "Keylds: ID1,]...

ointld,

essionld)

eters:

"

D"

Page 34

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3 Service Primitives and Attributes
3.1 IRSS::Bypass::Channel

3.1.1 PushBypass Operation
This operation pushes bypass messages through the crypto module.

The maximum bypass message size allowed can be retrieved from the GetMaxBypassSize()
operation.

Note: Bypass traffic is expected to be at a low rate, and therefore, flow control is not built into
the interface.

3.1.1.1 Synopsis

void PushBypass(in IRSS::Channelld channel, in CF::OctetSequence bypass)
raises(IRSS::InvalidChannelld, MaxBypassSizeExceeded, PolicyViolation);

3.1.1.2 Parameters

Parameter Type Description

Name

channel IRSS::Channelld Identifies the bypass channel
bypass CF::OctetSequence The bypass message to push

3.1.1.3 Return Value
None

3.1.1.4 Originator
Waveform clients

3.1.1.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid bypass
channel identifier

MaxBypassSizeExceeded The maximum bypass size was exceeded

PolicyViolation The requested bypass operation violates the bypass
policy for the channel

3.1.2 GetMaxBypassSize Operation

This operation allows waveform clients to retrieve a channel’s maximum bypass size. This
maximum bypass size represents physical system limitations and not bypass policy restrictions
(as enforced by the cryptographic subsystem), which will likely be less than the physical system
limitations.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 35
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0
3.1.2.1 Synopsis

unsigned long GetMaxBypassSize(in IRSS::Channelld channel)
raises(IRSS::InvalidChannelld);

3.1.2.2 Parameters

Parameter Type Description
Name
channel IRSS::Channelld Identifies the bypass channel

3.1.2.3 Return Value

Type Description Valid Range

unsigned long | Maximum bypass message | Channel dependent
size in octets.

3.1.2.4 Originator
Waveform clients

3.1.2.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid bypass
channel identifier

3.2 IRSS::Bypass::Consumer
Waveform clients provide the IRSS::Bypass::Consumer interface

3.2.1 PushBypass Operation
This operation forwards a bypassed message back to a waveform client.

Note: Bypass traffic is expected to be at a low rate, and therefore, flow control is not built into
the interface. A maximum message size allowed exists for any given bypass message.

3.2.1.1 Synopsis
void PushBypass(in CF::OctetSequence bypass);

3.2.1.2 Parameters

Parameter Type Description
Name
bypass CF::OctetSequence The message that was bypassed.

3.2.1.3 Return Value

None

Copyright © 2011 The Software Defined Radio Forum Inc. Page 36
All Rights Reserved

WIRELESS
INNOVATION

FOR U M

3.2.1.4 Originator

Radio Security Service

3.2.1.5 Exceptions

None

Security Work Group - International Radio Security Services AP1 Task Group

3.3 IRSS::Control::CertificateMgmt

IRSS API Specification
WINNF-09-S-0011-V1.0.0

Client interface provided by the IRSS for managing certificates by waveform clients.

3.3.1 RetrieveCertificate Operation

This operation returns the public portion of the requested certificate. It does not include the

private key.

3.3.1.1 Synopsis

CF::OctetSequence RetrieveCertificate(in Certificateld certld) raises(InvalidCertificateld);

3.3.1.2 Parameters

Parameter Name

Type

Description

certld

Certificateld

The ID of the certificate being requested

3.3.1.3 Return Value

Type Description Valid Range
CF::OctetSequence The certificate data. Certificate data is returned in X.509v3
format as specified in RFC 3280.
3.3.1.4 Originator
Waveform clients
3.3.1.5 Exceptions
Exception Description

InvalidCertificateld

The certificate ID is not a valid certificate ID

3.3.2 GetCertficatelds Operation

This operation retrieves all 1Ds for the certificates that have been loaded into, and are managed

by, the IRSS.

3.3.2.1 Synopsis

CertificateldSequence GetCertificatelds();

Copyright © 2011 The Software Defined Radio Forum Inc. Page 37

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.3.2.2 Parameters
None

3.3.2.3 Return Value

Type Description Valid Range
CertificateldSequence The IDs of all valid certificates | Platform dependent
currently being managed

3.3.2.4 Originator

Waveform clients

3.3.2.5 Exceptions

None

3.3.3 IsCertficateValid Operation

This operation checks if the certificate passed in is a valid certifcate. Possible reasons for a
certificate being invalid include: a certificate does not trace to a known trust anchor, it is expired,
the certificate has been revoked, etc.

3.3.3.1 Synopsis
boolean IsCertificateValid(in CF::OctetSequence certificate) raises(UnrecognizedCertificate

);

3.3.3.2 Parameters

Parameter Name | Type Description

certificate CF::OctetSequence The certificate data in X.509v3 format as
specified in RFC 3280.

3.3.3.3 Return Value

Type Description Valid Range
boolean | Indicates whether the certificate | TRUE=The passed in certificate is valid
is valid. FALSE=The passed in certificate is not valid

3.3.3.4 Originator
Waveform clients

3.3.3.5 Exceptions

Exception Description

UnrecognizedCertificate The passed in certificate data could not be recognized
as a certificate

Copyright © 2011 The Software Defined Radio Forum Inc. Page 38
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

3.4 IRSS::Control::ChannelMgmt
Client interface provided by the IRSS for creating and managing channels.
3.4.1 CreateCryptographicChannel Operation

This operation creates a cryptographic channel for the purpose of encrypting and decrypting user
data. Cryptographic resources are allocated at channel creation time. Before a cryptographic
channel can be used it must be configured and activated. Cryptographic channels are configured
by calling AddCryptographicConfiguration() (see 3.4.10) to add a configuration to the channel
and then activated by calling ActivateConfiguration() (see 3.4.13) to activate it.

The channel duplexity is specified at creation time to allow the CSS to allocate resources for the
channel. However, the actual duplexity used can vary with the active configuration. To ensure
proper resource allocation, a waveform should specify the needed duplexity requiring the most
CSS resources at channel creation time. For these purposes, duplexity can be ordered in
increasing CSS resource requirements as follows:

e SIMPLEX_RX, SIMPLEX_TX (low)

e HALF DUPLEX

e FULL_DUPLEX (high)

3.4.1.1 Synopsis

IRSS::Channelld CreateCryptographicChannel(in CryptoModuleld cm, in Endpointld
ptEndpoint, in Endpointld ctEndpoint, in CryptoApplicationldSequence cryptoApps, in Duplexity
channelDuplexity) raises(InvalidModuleld, InvalidEndpointld, InvalidEndpointPair,
InvalidCryptoApplicationld, ChannelCreationError);

3.4.1.2 Parameters

Parameter Name | Type Description

cm CryptoModuleld The identifier of the
Cryptographic module in
which to create the channel

ptEndpoint Endpointld The number identifying the
PT side crypto module
access point

ctEndpoint Endpointld The number identifying the
CT side crypto module
access point

cryptoApps CryptoApplicationldSequence The list of cryptographic
application IDs that will be
used on this channel

channelDuplexity | Duplexity The duplexity usage
requiring the most CSS
resources.
Copyright © 2011 The Software Defined Radio Forum Inc. Page 39

All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVARAY IRSS API Specification

WINNF-09-5-0011-V1.0.0
3.4.1.3 Return Value
Type Description Valid Range
IRSS::Channelld | The identifier of the Platform dependent
cryptographic channel created

3.4.1.4 Originator
Waveform clients

3.4.1.5 Exceptions

Exception Description

InvalidModuleld The crypto module ID is not a valid crypto
module 1D

InvalidEndpointld The endpoint ID is not a valid endpoint ID

InvalidEndpointPair A channel cannot be created between the
endpoints specified

ChannelCreationError The channel could not be created. This could be

due to insufficient resources being available, an
invalid combination of application IDs within the
cryptoApps, or other reasons.

InvalidCryptoApplicationld A crypto application ID is not a valid crypto
application ID

3.4.2 CreateTransecChannel Operation

This operation creates a TRANSEC channel for the purpose of encrypting data for transmission.
Cryptographic resources are allocated at channel creation time.

The channel duplexity is specified at creation time to allow the CSS to allocate resources for the
channel. However, the actual duplexity used can vary with the active configuration. To ensure
proper resource allocation, a waveform should specify the needed duplexity requiring the most
CSS resources at channel creation time. For these purposes, duplexity can be ordered in
increasing CSS resource requirements as follows:

e SIMPLEX_RX, SIMPLEX_TX (low)

e HALF DUPLEX

e FULL_DUPLEX (high)

3.4.2.1 Synopsis

IRSS::Channelld CreateTransecChannel(in CryptoModuleld cm, in Endpointld endpoint, in
CryptoApplicationldSequence cryptoApps, in Duplexity channelDuplexity) raises(
InvalidModuleld, InvalidCryptoApplicationld, ChannelCreationError, InvalidEndpointid);

Copyright © 2011 The Software Defined Radio Forum Inc. Page 40
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.4.2.2 Parameters

Parameter Name | Type Description

cm CryptoModuleld The identifier of the
Cryptographic module in
which to create the channel

endpoint Endpointld The number identifying the
crypto module access point
cryptoApps CryptoApplicationldSequence The list of cryptographic

application IDs that will be
used on this channel

channelDuplexity | Duplexity The duplexity usage
requiring the most CSS
resources.

3.4.2.3 Return Value

Type Description Valid Range
IRSS::Channelld | The identifier of the Platform dependent
TRANSEC channel created

3.4.2.4 Originator
Waveform clients

3.4.2.5 Exceptions

Exception Description

InvalidModuleld The crypto module ID is not a valid crypto module
ID

InvalidEndpointld The endpoint ID is not a valid endpoint ID

ChannelCreationError The channel could not be created. This could be

due to insufficient resources being available, an
invalid combination of application IDs within the
cryptoApps, or other reasons.

InvalidCryptoApplicationld A crypto application ID is not a valid crypto
application ID

3.4.3 CreateBypassChannel Operation

This operation creates a bypass channel. Bypass channels are used to move control information
through the cryptographic subsystem.

3.4.3.1 Synopsis

IRSS::Channelld CreateBypassChannel(in CryptoModuleld cm, in Endpointld sourceEndpoint,
in Endpointld destinationEndpoint) raises(ChannelCreationError, InvalidModuleld,
InvalidEndpointld, InvalidEndpointPair);

Copyright © 2011 The Software Defined Radio Forum Inc. Page 41
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.4.3.2 Parameters

Parameter Name | Type Description

cm CryptoModuleld The identifier of the Cryptographic
module in which to create the
channel

sourceEndpoint Endpointld The number identifying the bypass

channel’s source crypto module
access point

destinationEndpoint | Endpointld The number identifying the bypass
channel’s destination crypto
module access point

3.4.3.3 Return Value

Type Description Valid Range

IRSS::Channelld | The identifier of the bypass Platform dependent
channel created.

3.4.3.4 Originator
Waveform clients

3.4.3.5 Exceptions

Exception Description

InvalidEndpointld The endpoint ID is not a valid endpoint ID

InvalidEndpointPair A channel cannot be created between the
endpoints specified

ChannelCreationError The channel could not be created

InvalidModuleld The crypto module ID is not a valid crypto module
ID

3.4.4 CreateHashChannel Operation

This operation creates a hash channel. Hash channels are used to generate a hash on data that
has already been pushed into the channel.

3.4.4.1 Synopsis

IRSS::Channelld CreateHashChannel(in CryptoModuleld cm, in Endpointld inputEndpoint, in
HashAlgorithmld hashAlogrithm) raises(ChannelCreationError, InvalidModuleld,
InvalidEndpointld, InvalidAlgorithmld);

3.4.4.2 Parameters

Parameter Name | Type Description

cm CryptoModuleld The identifier of the Cryptographic
module to create the channel in

Copyright © 2011 The Software Defined Radio Forum Inc. Page 42
All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

inputEndpoint Endpointld The number identifying the hash
channel’s source crypto module access
point
hashAlgorithm HashAlgorithmlId The identifier of the Hash algorithm to
use.
3.4.4.3 Return Value
Type Description Valid Range

IRSS::Channelld

channel created.

The identifier of the hash

Platform dependent

3.4.4.4 Originator
Waveform clients

3.4.45 Exceptions

Exception

Description

InvalidEndpointld

The endpoint ID is not a valid endpoint ID

InvalidAlgorithmlid

The algorithm specified is not a supported
algorithm or is not a valid algorithm ID

hash

ChannelCreationError

The channel could not be created

InvalidModuleld

The crypto module ID is not a valid crypto
ID

module

3.4.5 CreateMacChannel Operation

This operation creates a MAC channel. MAC channels are used to generate a MAC for the data

which has already been passed in.

3.4.5.1 Synopsis

IRSS::Channelld CreateMacChannel(in CryptoModuleld cm, in Endpointld inputEndpoint, in

MacAlgorithmld macAlogrithmld, in

Keyld

macKeyld) raises(Invali

ChannelCreationError, InvalidAlgorithmld, InvalidModuleld, InvalidEndpointid);

3.4.5.2 Parameters

dKeyld,

Parameter Name | Type

Description

cm CryptoModuleld

The identifier of the Cryptographic
module in which to create the channel

inputEndpoint Endpointid

point

The number identifying the MAC
channel’s input crypto module access

macAlgorithmld | MacAlgorithmld

The identifier of the MAC algo
use.

rithm to

macKeyld Keyld

The identifier of the Key to use.

Copyright © 2011 The Software Defined Radio Forum Inc.

All Rights Reserved

Page 43

INNOVATION

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification

WINNF-09-5-0011-V1.0.0
3.4.5.3 Return Value
Type Description Valid Range

IRSS::Channelld

channel created.

The identifier of the MAC

Platform dependent

3.4.5.4 Originator
Waveform clients

3.4.5.5 Exceptions

Exception Description
InvalidKey The key ID specified is not a valid key ID or does
not specify a MAC key.

ChannelCreationError

The channel could not be created

InvalidAlgorithmld

The algorithm specified is not a supported MAC
algorithm or is not a valid algorithm ID

InvalidModuleld

The crypto module ID is not a valid crypto module
ID

InvalidEndpointld

The endpoint ID is not a valid endpoint ID

3.4.6 CreateSignatureChannel Operation

This operation creates a signature channel.
signature over data.

3.4.6.1 Synopsis
IRSS::Channelld
inputEndpoint,
InvalidCertificateld,
InvalidAlgorithmld);

3.4.6.2 Parameters

CreateSignatureChannel(
in SignatureAlgorithmid algorithmid,
ChannelCreationError,

Signature channels are used to generate a digital

in CryptoModuleld cm, in Endpointld
in Certificateld certld) raises(
InvalidModuleld, InvalidEndpointlid,

Parameter Name Type

Description

cm CryptoModuleld

The identifier of the
Cryptographic module in which
to create the channel

inputEndpoint Endpointld

The number identifying the
signature channel’s access point
into the crypto module

algorithmlid SignatureAlgorithmld The identifier of the Signature
algorithm to use.
certld Certificateld The identifier of the Certificate

to use.

Copyright © 2011 The Software Defined Radio Forum Inc.

All Rights Reserved

Page 44

INNOVATION

3.4.6.3 Return Value

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

Type Description

Valid Range

IRSS::Channelld | The identifier of the signature Platform dependent

channel created

3.4.6.4 Originator
Waveform clients

3.4.6.5 Exceptions

Exception

Description

InvalidCertificateld

The certificate ID specified is not a valid
certificate ID

ChannelCreationError

The channel could not be created

InvalidAlgorithmld

The algorithm specified is not a supported
signature algorithm or is not a valid algorithm 1D

InvalidModuleld

The crypto module ID is not a valid crypto module

ID

InvalidEndpointld The endpoint ID is not a valid endpoint ID

3.4.7 CreateSignatureVerificationChannel Operation

This operation creates a signature verification channel. Signature verification channels are used

to verify a digital signature.

3.4.7.1 Synopsis

IRSS::Channelld CreateSignatureVerificationChannel(in CryptoModuleld cm, in Endpointid
inputEndpoint, in SignatureAlgorithmld algorithmld, in CF::OctetSequence publicKey) raises(
ChannelCreationError, InvalidModuleld, InvalidEndpointld, InvalidKey, InvalidAlgorithmld);

3.4.7.2 Parameters

Parameter Name Type Description

cm CryptoModuleld The identifier of the
Cryptographic module in which
to create the channel

inputEndpoint Endpointld The number identifying the
signature verification channel’s
input crypto module access
point

algorithmlid SignatureAlgorithmld The identifier of the Signature
algorithm to use.

publicKey CF::OctetSequence The Public key used to verify
the signature.

Copyright © 2011 The Software Defined Radio Forum Inc.

All Rights Reserved

Page 45

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVARAY IRSS API Specification

WINNF-09-5-0011-V1.0.0
3.4.7.3 Return Value
Type Description Valid Range

IRSS::Channelld | The identifier of the signature verification | Platform dependent
channel created.

3.4.7.4 Originator
Waveform clients

3.4.7.5 Exceptions

Exception Description

InvalidKey The key specified is not a valid key

ChannelCreationError The channel could not be created

InvalidAlgorithmld The algorithm specified is not a supported
signature algorithm or is not a valid algorithm ID

InvalidModuleld The crypto module ID is not a valid crypto module
ID

InvalidEndpointld The endpoint ID is not a valid endpoint ID

3.4.8 CreateProtocolChannel Operation

This operation creates a protocol channel. Protocol channels are used to send and receive
protocol messages to and from the cryptographic subsystem. Protocol channels can be single
sided with a single endpoint ID. For a single sided protocol channel, the constant
UNUSED_ENDPOINT _ID should be passed in for either the ptEndpoint or ctEndpoint
parameters. Providing both endpoints results in a protocol channel capable of handling input
from one security domain, processing by the CSS, and results delivered to a different security
domain.

3.4.8.1 Synopsis

IRSS::Channelld CreateProtocolChannel(in CryptoModuleld cm, in Endpointld ptEndpoint, in
Endpointld ctEndpoint, in CrptoApplicationld protocolApplicationld) raises(
ChannelCreationError, InvalidModuleld, InvalidEndpointlid,
InvalidCryptographicApplicationld, InvalidEndpointPair);

3.4.8.2 Parameters

Parameter Name Type Description

Cm CryptoModuleld The identifier of the Cryptographic
module in which to create the channel

ptEndpoint Endpointid The number identifying the protocol

channel’s PT side crypto module
access point

ctEndpoint Endpointld The number identifying the protocol
channel’s CT side crypto module
access point.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 46
All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

protocolApplicationld | CryptoApplicationld

ID specifying the crypto application
that contains the desired protocol.

3.4.8.3 Return Value

Type Description Valid Range
IRSS::Channelld | The identifier of the protocol channel Platform dependent
created

3.4.8.4 Originator
Waveform clients

3.4.8.5 Exceptions

Exception

Description

ChannelCreationError

The channel could not be created

InvalidCryptoApplicationld

The crypto application ID specified is not a
supported crypto application or is not a valid
crypto application 1D

InvalidModuleld

The crypto module ID is not a valid crypto module
ID

InvalidEndpointld

The endpoint ID is not a valid endpoint 1D

InvalidEndpointPair

A channel cannot be created between the
endpoints specified.

3.4.9 DestroyChannel Operation

This operation destroys a channel. Cryptographic resources allocated to the channel are returned
to the system and the channel can no longer be used after this operation returns.

3.4.9.1 Synopsis

void DestroyChannel(in IRSS::Channelld channel) raises(IRSS::InvalidChannelld);

3.4.9.2 Parameters

Parameter Name

Type

Description

channel

IRSS::Channelld

The identifier of the channel to be destroyed

3.4.9.3 Return Value

None
3.4.9.4 Originator

Waveform clients

Copyright © 2011 The Software Defined Radio Forum Inc. Page 47

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.4.9.5 Exceptions

Exception Description
IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier

3.4.10 AddCryptographicConfiguration Operation

This operation adds a configuration to a cryptographic channel using the parameters passed in.
Multiple configurations can be added to a channel, but only one configuration may be active at
any time.

3.4.10.1 Synopsis

Configurationld ~ AddCryptographicConfiguration(in IRSS::Channelld channel, in
CryptographicConfiguration configuration) raises(IRSS::InvalidChannelld,
InvalidConfiguration);

3.4.10.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The identifier of the
cryptographic channel to
add the configuration to.

configuration CryptographicConfiguration The Cryptographic
configuration to add.

3.4.10.3 Return Value

Type Description Valid Range
Configurationld The identifier of the configuration | Platform dependent
added.

3.4.10.4 Originator
Waveform clients

3.4.10.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for a cryptographic
channel.

InvalidConfiguration The configuration contains invalid or conflicting
elements

3.4.11 AddTransecConfiguration Operation

This operation adds a configuration to a TRANSEC channel using the parameters passed in.
Multiple configurations can be added to a channel, but only one may be active at any time.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 48
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0
3.4.11.1 Synopsis

Configurationld AddTransecConfiguration(in IRSS::Channelld channel, in
TransecConfiguration configuration) raises(IRSS::InvalidChannelld, InvalidConfiguration);

3.4.11.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The identifier of the
TRANSEC channel to add
the configuration to.

configuration TransecConfiguration The TRANSEC
configuration to add.

3.4.11.3 Return Value

Type Description Valid Range
Configurationld The identifier of the Platform dependent
configuration added.

3.4.11.4 Originator
Waveform clients

3.4.11.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for a TRANSEC
channel.

InvalidConfiguration The configuration contains invalid or conflicting
elements

3.4.12 RemoveConfiguration Operation
This operation removes a configuration from a cryptographic or TRANSEC channel.

3.4.12.1 Synopsis

void RemoveConfiguration(in Configurationld channelConfigld) raises(
InvalidConfigurationld);

3.4.12.2 Parameters

Parameter Name | Type Description
channelConfigld | Configurationld The identifier of the configuration to
remove.

3.4.12.3 Return Value

None

Copyright © 2011 The Software Defined Radio Forum Inc. Page 49
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

3.4.12.4 Originator
Waveform clients

3.4.12.5 Exceptions

Exception Description

InvalidConfigurationld The configuration ID is not a valid configuration 1D

3.4.13 ActiviateConfiguration Operation

This operation activates a previously added configuration on a cryptographic or TRANSEC
channel. Any cryptographic state from the prior configuration is cleared. Although a
DeactivateConfiguration() (see 3.4.14) is defined, it is permissible to switch to a new
configuration by calling ActivateConfiguration() without first deactivating the current
configuration.

3.4.13.1 Synopsis

void ActivateConfiguration(in Configurationld channelConfigld, in CF::OctetSequence
activationData) raises(InvalidConfigurationld, ConfigurationActivationError);

3.4.13.2 Parameters

Parameter Name | Type Description

channelConfigld | Configurationld The identifier of the configuration to activiate
(the channel is implied by this identifier).

activationData CF::OctetSequence Optional control or configuration information for

use with the configuration being activated. Note
that most configuration is set via the
AddCryptographicConfiguration() (see 3.4.10)
and AddTransecConfiguration() (see 3.4.11)

operations.
3.4.13.3 Return Value
None
3.4.13.4 Originator
Waveform clients
3.4.13.5 Exceptions
Exception Description
InvalidConfigurationld The configuration ID is not a valid configuration
ConfigurationActivationError IAI\D configuration could not be activated
Copyright © 2011 The Software Defined Radio Forum Inc. Page 50

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.4.14 DeactivateConfiguration Operation

This operation deactivates an active configuration on a cryptographic or TRANSEC channel.
Any cryptographic state of the channel is lost. The channel itself is not destroyed.

3.4.14.1 Synopsis

void DeactivateConfiguration(in Configurationld channelConfigld) raises(
IRSS::Configurationinactive, InvalidConfigurationid);

3.4.14.2 Parameters

Parameter Name | Type Description

channelConfigld | Configurationld The identifier of the configuration to be
deactivated.

3.4.14.3 Return Value
None

3.4.14.4 Originator
Waveform clients

3.4.14.5 Exceptions

Exception Description

IRSS::Configurationlnactive The configuration being deactivated is not an
active configuration

InvalidConfigurationld The configuration ID is not a valid configuration
ID

35 IRSS::Control::KeyMgmt
3.5.1 UpdateKey Operation

This operation generates a new key from the existing key using a key update algorithm. This
operation is used to generate an updated key for a key type that has only one available update
algorithm.

The existing key is replaced by the new key.

3.5.1.1 Synopsis
void UpdateKey(in Keyld updateKeyld) raises(InvalidKeyld, KeyUpdateError);

3.5.1.2 Parameters

Parameter Name | Type Description
updateKeyld Keyld The ID of the key to be updated
Copyright © 2011 The Software Defined Radio Forum Inc. Page 51

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.5.1.3 Return Value
None

3.5.1.4 Originator
Waveform clients

3.5.1.5 Exceptions

Exception Description
InvalidKeyld The key ID specified is not a valid key ID
KeyUpdateError The key could not be updated

3.5.2 UpdateKeyWithAlgorithm Operation

This operation generates a new key from the existing key using a key update algorithm. The
algorithm must be specified. This operation is used to update a key that has more than one
available update algorithm.

The existing key is replaced by the new key.

3.5.2.1 Synopsis

void UpdateKeyWithAlgorithm(in Keyld updateKeyld, in KeyUpdateAlgorithmld algorithm)
raises(InvalidKeyld, KeyUpdateError, InvalidKeyUpdateAlgorithmld);

3.5.2.2 Parameters

Parameter Name | Type Description

updateKeyld Keyld The ID of the key to be updated

algorithm KeyUpdateAlgorithmld The identifier of the algorithm to
use for updating the key

3.5.2.3 Return Value
None

3.5.2.4 Originator
Waveform clients

3.5.2.5 Exceptions

Exception Description

InvalidKeyld The key ID specified is not a valid key ID

KeyUpdateError The key could not be updated

InvalidKeyUpdateAlgorithmld The key update algorithm ID is not a valid key
update algorithm ID for this key

Copyright © 2011 The Software Defined Radio Forum Inc. Page 52
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.5.3 GetUpdateCount Operation
This operation returns the number of times a key has been updated.

3.5.3.1 Synopsis
unsigned short GetUpdateCount(in Keyld updateCountKeyld) raises(InvalidKeyld);

3.5.3.2 Parameters

Parameter Name | Type Description

updateCountKeyld | Keyld The ID of the key whose update count is
being requested

3.5.3.3 Return Value

Type Description Valid Range
unsigned short | The update count of the key Platform dependent
requested.

3.5.3.4 Originator
Waveform clients

3.5.3.5 Exceptions

Exception Description

InvalidKeyld The key ID specified is not a valid key ID

3.5.4 ZeroizeKey Operation
This operation destroys the designated key.

3.5.4.1 Synopsis
void ZeroizeKey(in Keyld zeroizeKeyld) raises(InvalidKeyld);

3.5.4.2 Parameters

Parameter Name | Type Description

zeroizeKeyld Keyld The identifier of the Key to zeroize.

3.5.4.3 Return Value
None
3.5.4.4 Originator

Waveform clients

Copyright © 2011 The Software Defined Radio Forum Inc. Page 53
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.5.4.5 Exceptions

Exception Description

InvalidKeyld The key ID specified is not a valid key ID

3.6 IRSS::landA::Channel
An abstract base class that allows clients to push data to the IRSS.
3.6.1 PushData Operation

This operation pushes data to the specified channel where it will be processed by the algorithm
configured for that channel. Data size must not exceed the maximum data size as defined by
GetMaxDataSize() (see 3.6.2).

3.6.1.1 Synopsis

void PushData(in IRSS::Channelld channel, in CF::OctetSequence data) raises(
IRSS::InvalidChannelld,MaxDataSizeExceeded);

3.6.1.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The ID of the channel receiving the data
data CF::OctetSequence The data being pushed into the IRSS

3.6.1.3 Return Value
None

3.6.1.4 Originator
Waveform clients

3.6.1.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for an I&A channel.

MaxDataSizeExceeded A client made an attempt to push data that exceeded
the maximum allowable size

3.6.2 GetMaxDataSize Operation

This operation returns the maximum data size, in octets, allowed on the specified channel. Data
pushed via PushData() operation (see 3.6.1) must not exceed this size.

3.6.2.1 Synopsis
unsigned long GetMaxDataSize(in IRSS::Channelld channel) raises(IRSS::InvalidChannelld);

Copyright © 2011 The Software Defined Radio Forum Inc. Page 54
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.6.2.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The identifier of the Channel to get the max
data size for.

3.6.2.3 Return Value

Type Description Valid Range

unsigned long | Maximum data size in octets. Channel dependent

3.6.2.4 Originator
Waveform clients

3.6.2.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for an 1&A channel.

3.6.3 Reset Operation

This operation resets the state of a the landA channel. The channel is still configured with the
information provided at channel creation time. Any computed values from the algorithm
operating on the data pushed in via the PushData() operation (see 3.6.1) are reset. This operation
should be called before reusing a channel for a new data set.

3.6.3.1 Synopsis
void Reset(in IRSS::Channelld channel) raises (IRSS::InvalidChannelld);

3.6.3.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The identifier of the Channel to reset.

3.6.3.3 Return Value
None

3.6.3.4 Originator
Waveform clients

3.6.3.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for an 1&A channel.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 55
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.7 IRSS::landA::HashChannel
3.7.1 GetHash Operation
This operation returns the hash of the data pushed to the channel since it was created or last reset.

3.7.1.1 Synopsis

CF::OctetSequence GetHash(in IRSS::Channelld channel) raises(IRSS::InvalidChannelld,
InvalidState);

3.7.1.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The identifier of the hash channel to use.

3.7.1.3 Return Value

Type Description Valid Range

CF::OctetSequence The hash Algorithm dependent

3.7.1.4 Originator
Waveform clients

3.7.1.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for a hash channel.

InvalidState The system is not in the correct state to complete the
operation. For example, data has not yet been pushed
to the channel.

3.8 IRSS::landA::MacChannel
3.8.1 GetMac Operation

This operation returns the MAC of the data pushed to the channel since it was created or last
reset.

3.8.1.1 Synopsis

CF::OctetSequence GetMac(in IRSS::Channelld channel) raises(IRSS::InvalidChannelld,
InvalidState);

3.8.1.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The identifier of the MAC channel to use.
Copyright © 2011 The Software Defined Radio Forum Inc. Page 56

All Rights Reserved

WIRELESS
INNOVATION

FOR U M

3.8.1.3 Return Value

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

Type Description

Valid Range

CF::OctetSequence The MAC

Algorithm dependent

3.8.1.4 Originator
Waveform clients

3.8.1.5 Exceptions

Exception

Description

IRSS::InvalidChannelld

The channel identifier specified is not a valid channel
identifier or is not the identifier for a MAC channel.

InvalidState

The system is not in the correct state to complete the
operation. For example, data has not yet been pushed
to the channel

3.8.2 IsMacValid Operation

This operation verifies a MAC. When this operation is invoked, the security subsystem
compares the passed in MAC to the MAC it has calculated on the data pushed via PushData()
(see 3.6.1) since the channel was created or last reset. The result of the comparison is returned,
indicating if the client has a valid MAC or not.

3.8.2.1 Synopsis

boolean IsMacValid(in IRSS::Channelld channel, in CF::OctetSequence mac) raises(
IRSS::InvalidChannelld, InvalidState, InvalidMac);

3.8.2.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The identifier of the MAC channel to use.
mac CF::OctetSequence The MAC to be verified

3.8.2.3 Return Value

Type Description

Valid Range

boolean | Indicates whether the passed in
MAC is a valid MAC.

TRUE=The data is a valid MAC
FALSE=The data is not a valid MAC

3.8.2.4 Originator

Waveform clients

Copyright © 2011 The Software Defined Radio Forum Inc. Page 57

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.8.2.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for a MAC channel.

InvalidState The system is not in the correct state to complete the

operation. For example, data has not yet been pushed
to the channel

InvalidMac The MAC given is not in the right size or format

3.9 IRSS::landA::SignatureChannel
3.9.1 GetSignature Operation

This operation returns the digital signature of the data pushed to the channel since it was created
or last reset.

3.9.1.1 Synopsis

CF::OctetSequence GetSignature(in IRSS::Channelld channel) raises(
IRSS::InvalidChannelld, InvalidState);

3.9.1.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The identifier of the signature channel to
use.

3.9.1.3 Return Value

Type Description Valid Range

CF::OctetSequence The digital signature Algorithm dependent

3.9.1.4 Originator
Waveform clients

3.9.1.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for a signature
channel.

InvalidState The system is not in the correct state to complete the
operation. For example, data has not yet been pushed
to the channel.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 58
All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

3.10 IRSS::landA::SignatureVerificationChannel

3.10.1 IsSignatureValid Operation

This operation verifies a signature.

When this operation is invoked, the security subsystem

compares the passed in signature to the signature it has calculated on the data pushed via
PushData() (see 3.6.1) since the channel was created or last reset. The result of the comparison
is returned, indicating if the client has a valid signature.

3.10.1.1 Synopsis

boolean IsSignatureValid(in IRSS::Channelld channel, CF::OctetSequence signature) raises(
IRSS::InvalidChannelld, InvalidState, InvalidSignature);

3.10.1.2 Parameters

Parameter Name

Type

Description

channel

IRSS::Channelld

The identifier of the signature verification
channel to use.

signature

CF::OctetSequence

The signature to be verified

3.10.1.3 Return Value

Type Description

Valid Range

boolean | Indicates whether the passed in
signature matches.

TRUE=The passed in signature matches what the
security subsystem generated

FALSE=The passed in signature does not match
what the security subsystem generated

3.10.1.4 Originator
Waveform clients

3.10.1.5 Exceptions

Exception

Description

IRSS::InvalidChannelld

The channel identifier specified is not a valid channel
identifier or is not the identifier for a signature
verification channel.

InvalidState

The system is not in the correct state to complete the
operation. For example, data has not yet been pushed
to the channel

InvalidSignature

The passed in signature is not in the right size or
format.

3.11 IRSS::landA::Random

3.11.1 GetPseudoRandomOperation

This operation returns a pseudorandom number.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 59

All Rights Reserved

WIRELESS
INNOVATION

FOR U M

3.11.1.1 Synopsis

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

CF::OctetSequence GetPseudoRandom(in unsigned short seed, in unsigned short numBytes);

3.11.1.2 Parameters

Parameter Name

Type Description

seed

unsigned short | Number used to initialize the pseudorandom number

generator

numBytes

unsigned short | Length of random number in octets

3.11.1.3 Return Value

Type

Description

Valid Range

CF::OctetSequence

The pseudorandom number 0 to 287 MmBYEs) 1

3.11.1.4 Originator
Waveform clients
3.11.1.5 Exceptions

None

3.11.2 GetRandom Operation

This operation returns a true random number.

3.11.2.1 Synopsis

CF::OctetSequence GetRandom(in unsigned short numBytes);

3.11.2.2 Parameters

Parameter Name

Type

Description

numBytes

unsigned short

Size of random number being requested in
octets

3.11.2.3 Return Value

Type

Description

Valid Range

CF::OctetSequence

The random number.

0 to 2(8*numBytes)_1

3.11.2.4 Originator
Waveform clients
3.11.2.5 Exceptions

None

Copyright © 2011 The Software Defined Radio Forum Inc. Page 60

All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

3.12 IRSS::Infosec::CryptographicChannel

This interface is used by waveform clients for encryption and decryption. It supports streaming
modes and packet modes.

Streams have traditionally been employed by circuit switched legacy waveforms. Messages are
defined across multiple calls to the IRSS. Message boundaries are defined by flagging packets
with start of message (SOM) and end of message (EOM) flags. Typically, the cryptographic
application will prepend a cryptgraphic preamble to the first encrypted packet.

Networking waveforms would typically use packet mode. With packet mode operation, each
packet is its own message with an implied SOM and EOM. Many packet based cryptographic
applications will include an initialization vector (1V) with each packet.

3.12.1 TransformStream Operation

Clients use the TransformStream() operation to transform (i.e. encrypt or decrypt depending on
the source and destination) messages, as part of a streaming protocol as described in 3.12, where
each message consists of one or more packets delimited with SOM and EOM flags. Clients must
identify the first packet of a message by asserting the som parameter and the last packet of a
message by asserting the eom parameter. If a message consists of a single packet, then clients
should assert both the som and eom parameters. After the security subsystem transforms the
packet, it will be pushed to the consumer interface of the other endpoint of the channel via
PushStream() (see 3.13.1).

The packet size cannot exceed the maximum packet size, returned by GetMaxPacketSize().

When TransformStream() returns false, this constitutes a flow pause state. The client should not
send more packets until SpaceAvailable() returns true, or until it receives a flow resume event
through the IRSS::Infosec::ControlSignals interface.

3.12.1.1 Synopsis

boolean TransformStream(in IRSS::Channelld channel, in boolean som, in boolean eom, in
Packet streamPacket) raises(IRSS::InvalidChannelld, MaxPacketSizeExceeded, BadSomFlag,
IRSS::Configurationinactive);

3.12.1.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The identifier of the cryptographic channel
to use.

som boolean TRUE=The packet is the first packet of a
message.
FALSE=The packet is not the first packet of
a message

Copyright © 2011 The Software Defined Radio Forum Inc. Page 61

All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INDQVARAY IRSS API Specification

WINNF-09-5-0011-V1.0.0

eom boolean TRUE=The packet is the last packet of a
message.
FALSE=The packet is not the last packet of
a message

streamPacket Packet The packet to transform

3.12.1.3 Return Value

Type Description Valid Range

boolean | Indicates whether there is any TRUE=There is available space and the client can
remaining available space in the | continue pushing packets.

designated channel. FALSE=There is not available space (i.e.flow
paused) and the client should discontinue pushing
packets until space becomes available.

3.12.1.4 Originator
Waveform clients

3.12.1.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not the identifier for a cryptographic
channel.

MaxPacketSizeExceeded The packet exceeded the maximum packet size

BadSomFlag A packet tagged as SOM was received in the middle

of a previously started message, or a packet to start a
message was received without the SOM flag set

IRSS::Configurationlnactive An attempt was made to use a cryptographic channel
that does not have an active configuration

3.12.2 TransformPackets Operation

Clients use the TransformPackets() operation to transform (i.e. encrypt or decrypt depending on
the source and destination) packets, as part of a networking protocol as described in 3.12, where
each packet is considered a self-contained message with implied SOM and EOM flags. For
efficiency reasons, this operation takes in a payload consisting of a sequence of packets, allowing
for reduced overhead. After the security subsystem transforms the packets, they will be pushed
to the consumer interface of the other endpoint of the channel via PushPackets() (see 3.13.2).

No packet in the sequence can exceed the maximum packet size, returned by
GetMaxPacketSize().

The total size of all the packets cannot exceed the maximum payload size returned by
GetMaxPayloadSize().

Copyright © 2011 The Software Defined Radio Forum Inc. Page 62
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

When TransformPackets() returns false, this constitutes a flow pause state. The client should not
send more packets until SpaceAvailable() returns true, or it receives a flow resume event through
the IRSS::Infosec::ControlSignals interface.

3.12.2.1 Synopsis

boolean TransformPackets(in IRSS::Channelld channel, in PacketSequence payload) raises(
IRSS::InvalidChannelld, MaxPayloadSizeExceeded, MaxPacketSizeExceeded,
IRSS::Configurationinactive);

3.12.2.2 Parameters

Parameter Name Type Description

channel IRSS::Channelld The identifier of the
cryptographic channel to use.

payload PacketSequence A sequence of one or more
packets to be transformed.

3.12.2.3 Return Value

Type Description Valid Range

boolean | Indicates whether there is any TRUE=There is available space and the client can
remaining available space in the | continue pushing payloads.

designated channel. FALSE=There is not available space (i.e.flow
paused) and the client should discontinue pushing
payloads until space becomes available.

3.12.2.4 Originator
Waveform clients

3.12.2.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a cryptographic channel
identifier

MaxPacketSizeExceeded One or more packets in the payload exceeded the
maximum packet size

MaxPayloadSizeExceeded The entire payload exceeded the maximum payload
size

IRSS::Configurationlnactive An attempt was made to use a cryptographic
channel that does not have an active configuration

3.12.3 GetMaxPayloadSize Operation
This operation returns the maximum payload in octets that the channel can accept.

This applies to the sum of the packets pushed to the channel via a TransformPacket() call (see
3.12.2).

Copyright © 2011 The Software Defined Radio Forum Inc. Page 63
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.12.3.1 Synopsis

unsigned long GetMaxPayloadSize(in IRSS::Channelld channel) raises(
IRSS::InvalidChannelld);

3.12.3.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The identifier of the cryptographic channel
to query

3.12.3.3 Return Value

Type Description Valid Range

unsigned long Maximum payload size in octets. | Channel dependent

3.12.3.4 Originator
Waveform clients

3.12.3.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a cryptographic channel
identifier.

3.12.4 GetMaxPacketSize Operation
This operation returns the maximum packet size the IRSS can accept in octets.

Clients should not pass packets to the IRSS, via TransformStream() (see 3.12.1) or
TransformPacket() (see 3.12.2), that are larger than this size.

3.12.4.1 Synopsis

unsigned long GetMaxPacketSize(in IRSS::Channelld channel) raises(IRSS::InvalidChannelld
);

3.12.4.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The identifier of the cryptographic channel
to query

3.12.4.3 Return Value

Type Description Valid Range

unsigned long Maximum packet size in octets. | Channel dependent

3.12.4.4 Originator
Waveform clients

Copyright © 2011 The Software Defined Radio Forum Inc. Page 64
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.12.4.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a cryptographic channel
identifier.

3.12.5 SpaceAvailable Operation

This operation returns a boolean indicating whether there is any space available for a transform
request.

If a false is returned, the client should not push another packet until it receives a flow resume
event through the IRSS::Infosec::ControlSignals interface or a subsequent call to
SpaceAuvailable() returns true.

3.12.5.1 Synopsis
boolean SpaceAvailable(in IRSS::Channelld channel) raises(IRSS::InvalidChannelld);

3.12.5.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The identifier of the cryptographic channel
to query

3.12.5.3 Return Value

Type Description Valid Range
boolean | Indicates whether there is any TRUE=There is available space and the client can
remaining available space in the | continue pushing packets/payloads.
designated channel. FALSE=There is not available space (i.e.flow
paused) and the client should discontinue pushing
packets/payloads until space becomes available.

3.12.5.4 Originator
Waveform clients

3.12.5.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a cryptographic channel
identifier.

3.13 IRSS::Infosec::CryptographicConsumer

Waveform clients provide the IRSS::CrytographicConsumer interface. The IRSS uses this
interface to push data to a client after a transform operation successfully completes. Flow

Copyright © 2011 The Software Defined Radio Forum Inc. Page 65
All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

control is not employed in the interface to the client. Any buffering needed as part of an overall
system flow control protocol must be implemented within the client.

3.13.1 PushStream Operation

This operation pushes one packet of a message to the client, after a successful transform
operation completes as part of a streaming protocol as described in 3.12, where each message
consists of one or more packets delimited with SOM and EOM flags. The IRSS will identify the
first packet of a message by asserting the som parameter and the last packet of a message by
asserting the eom parameter. If a message consists of a single packet, then the IRSS will assert
both the som and eom parameters.

3.13.1.1 Synopsis

void PushStream(in IRSS::Channelld channel, in boolean som, in boolean eom, in Packet

streamPacket);

3.13.1.2 Parameters

Parameter Name

Type

Description

channel

IRSS::Channelld

The identifier of the cryptographic channel
used to transform the packet.

som boolean TRUE=The packet is the first packet of a
message.
FALSE=The packet is not the first packet of
a message

eom boolean TRUE=The packet is the last packet of a
message.
FALSE=The packet is not the last packet of
a message

streamPacket Packet The transformed packet

3.13.1.3 Return Value

None
3.13.1.4 Originator
IRSS
3.13.1.5 Exceptions

None

Copyright © 2011 The Software Defined Radio Forum Inc. Page 66

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.13.2 PushPackets Operation

This operation pushes a sequence of one or more packets of data to the client, after a successful
transform operation completes as part of a networking protocol as described in 3.12, where each
packet is considered a self-contained message with implied SOM and EOM flags.

3.13.2.1 Synopsis
void PushPackets(in IRSS::Channelld channel, in PacketSequence payload);

3.13.2.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The identifier of the cryptographic
channel used to transform the packet(s).

payload PacketSequence The sequence of transformed packets

3.13.2.3 Return Value

None

3.13.2.4 Originator

IRSS

3.13.2.5 Exceptions

None

3.14 IRSS::Infosec::ControlSignals

Flow control may be employed in the IRSS::Infosec::CryptographicChannel interface to the
IRSS.

A client can be flow paused after pushing a packet/payload to the
IRSS::Infosec::CryptographicChannel if that packet/payload fills the queues managed by the
IRSS. The ControlSignals interface is the mechanism that the IRSS uses to notify a client that
flow can once again resume.

3.14.1 FlowResume Operation
The IRSS uses this operation to signal to the client that flow can resume.

3.14.1.1 Synopsis
oneway void FlowResume(in IRSS::Channelld channel);

Copyright © 2011 The Software Defined Radio Forum Inc. Page 67
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.14.1.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The ID of the cryptographic channel where
flow can be resumed

3.14.1.3 Return Value

None

3.14.1.4 Originator

IRSS

3.14.1.5 Exceptions

None

3.15 IRSS::Infosec::TransecChannel
3.15.1 EncryptTransec Operation

This operation encrypts the supplied payload using the activated configuration for the supplied
channel.

The seed and its related parameter, numSeedBits, are optional. If not provided (i.e. numSeedBits
is zero), the cryptographic subsystem continues the previously seeded encryption.

The payload cannot exceed the maximum payload size returned by GetMaxPayloadSize().

3.15.1.1 Synopsis

void EncryptTransec(in IRSS::Channelld channel, in CF::OctetSequence seed, in unsigned long
numSeedBits, inout CF::OctetSequence payload) raises(IRSS::InvalidChannelld,
BadTransecSeed, IRSS::Configurationlnactive, MaxPayloadSizeExceeded);

3.15.1.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The ID of the TRANSEC channel where
encryption is being requested

seed CF::OctetSequence Optional parameter used to initialize the
encryption algorithm.

numSeedBits unsigned long Length of seed in bits. A seed is not
necessarily an integer multiple of 8 bits

payload CF::OctetSequence Data to be encrypted

3.15.1.3 Return Value

None

Copyright © 2011 The Software Defined Radio Forum Inc. Page 68
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

3.15.1.4 Originator
Waveform clients

3.15.1.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a TRANSEC channel
identifier

BadTransecSeed The seed provided does not contain at least

numSeedBits of seed data or does not contain the
number of seed bits required by the algorithm

IRSS::Configurationlnactive An attempt was made to use a TRANSEC channel
that does not have an active configuration
MaxPayloadSizeExceeded The payload exceeded the maximum payload size

3.15.2 DecryptTransec Operation

This operation decrypts the supplied payload using the active configuration for the supplied
channel.

The seed and its related parameter, numSeedBits, are optional. If not provided (i.e. numSeedBits
is zero), the cryptographic subsystem continues the previously seeded decryption.

The payload cannot exceed the maximum payload size returned by GetMaxPayloadSize().

3.15.2.1 Synopsis

void DecryptTransec(in IRSS::Channelld channel, in CF::OctetSequence seed, in unsigned long
numSeedBits, inout CF::OctetSequence payload) raises(IRSS::InvalidChannelld,
BadTransecSeed, IRSS::Configurationlnactive, MaxPayloadSizeExceeded);

3.15.2.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The ID of the TRANSEC channel where
decryption is being requested

seed CF::OctetSequence Optional parameter used to initialize the
decryption algorithm.

numSeedBits unsigned long Length of seed in bits. A seed is not
necessarily an integer multiple of 8 bits

payload CF::OctetSequence Data to be decrypted

3.15.2.3 Return Value

None

Copyright © 2011 The Software Defined Radio Forum Inc. Page 69
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

3.15.2.4 Originator
Waveform clients

3.15.2.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a TRANSEC channel
identifier

BadTransecSeed The seed provided does not contain at least

numSeedBits of seed data or does not contain the
number of seed bits required by the algorithm

IRSS::Configurationlnactive An attempt was made to use a TRANSEC channel
that does not have an active configuration
MaxPayloadSizeExceeded The payload exceeded the maximum payload size.

3.15.3 GenerateKeyStream Operation

This operation provides TRANSEC cover to a waveform client’s transmission by having the
security subsystem generate a TRANSEC keystream. The waveform applies the keystream to
its transmission information directly.

The seed and its related parameter, numSeedBits, are optional. If not provided (i.e. numSeedBits
is zero), the cryptographic subsystem continues the previously seeded keystream.

3.15.3.1 Synopsis

CF::OctetSequence GenerateKeyStream(in IRSS::Channelld channel, in CF::OctetSequence
seed, in unsigned long numSeedBits, in unsigned long numKeyStreamBits) raises(
IRSS::InvalidChannelld, BadTransecSeed, IRSS::Configurationlnactive);

3.15.3.2 Parameters

Parameter Name Type Description

channel IRSS::Channelld The ID of the TRANSEC channel from
which the TRANSEC keystream is being
requested

seed CF::OctetSequence Optional parameter used to initialize the
keystream algorithm

numSeedBits unsigned long Length of seed in bits. A seed is not
necessarily an integer multiple of 8 bits

numKeyStreamBits | unsigned long Length of keystream being requested in bits

3.15.3.3 Return Value

Type Description Valid Range
CF::OctetSequence | The generated TRANSEC Algorithm dependent
keystream
Copyright © 2011 The Software Defined Radio Forum Inc. Page 70

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.15.3.4 Originator
Waveform clients

3.15.3.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a TRANSEC channel
identifier.

BadTransecSeed The seed provided does not contain at least

numSeedBits of seed data or does not contain the
number of seed bits required by the algorithm.

IRSS::Configurationlnactive An attempt was made to use a TRANSEC channel
that does not have an active configuration

3.15.4 GetMaxPayloadSize Operation

This operation returns the channel’s maximum payload size in octets. The payloads used in the
EncryptTransec() (see 3.15.1) and DecryptTransec() (see 3.15.2) operations should not exceed
this size.

3.15.4.1 Synopsis

unsigned long GetMaxPayloadSize(in IRSS::Channelld channel) raises(
IRSS::InvalidChannelld);

3.15.4.2 Parameters

Parameter Name | Type Description
channel IRSS::Channelld The identifier of the TRANSEC channel to
query

3.15.4.3 Return Value

Type Description Valid Range

unsigned long | Maximum payload size in octets | Channel dependent

3.15.4.4 Originator
Waveform clients

3.15.4.5 Exceptions

Exception Description
IRSS::InvalidChannelld The channel identifier specified is not a valid
channel identifier or is not a TRANSEC channel
identifier
Copyright © 2011 The Software Defined Radio Forum Inc. Page 71

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

3.16 IRSS::Protocol::Channel

Waveform clients use the IRSS::Protocol::Channel interface to push protocol messages to the
IRSS.

Each protocol’s specific message details are provided in external extension documents. Both the
waveform and IRSS need to implement the protocol per the protocol definition.

3.16.1 PushMessage Operation

This operation pushes a message to the designated channel.
The maximum message size for a protocol is specified in the protocol definition.

3.16.1.1 Synopsis

void PushMessage(in IRSS::Channelld channel, in CF::OctetSequence message) raises(
IRSS::InvalidChannelld, MaxMessageSizeExceeded, InvalidMessage, UnrecognizedMessage);

3.16.1.2 Parameters

Parameter Name | Type Description

channel IRSS::Channelld The ID of the protocol channel to push the
message to.

message CF::OctetSequence The message to push

3.16.1.3 Return Value
None

3.16.1.4 Originator
Waveform clients

3.16.1.5 Exceptions

Exception Description

IRSS::InvalidChannelld The channel identifier specified is not a valid channel
identifier or is not a protocol channel identifier

MaxMessageSizeExceeded The message pushed exceeds the maximum message
size defined by the protocol.

InvalidMessage The waveform client passed a message that is not
valid for this protocol or is not valid at this time

UnrecognizedMessage The waveform client passed a message that is not
recognized by the IRSS

Copyright © 2011 The Software Defined Radio Forum Inc. Page 72
All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group

3.17 IRSS::Protocol::Consumer

IRSS API Specification
WINNF-09-S-0011-V1.0.0

Waveform clients provide the IRSS::Protocol::Consumer interface. The IRSS uses this interface
to push protocol messages to the client.

3.17.1 PushMessage Operation

This operation pushes protocol messages to waveform clients.

3.17.1.1 Synopsis

void PushMessage(in IRSS::Channelld channel, in CF::OctetSequence message);

3.17.1.2 Parameters

Parameter Name

Type

Description

channel

IRSS::Channelld

The ID of the protocol channel used to push
the message

message

CF::OctetSequence

The protocol message being pushed

3.17.1.3 Return Value

None
3.17.1.4 Originator
IRSS.
3.17.1.5 Exceptions

None

Copyright © 2011 The Software Defined Radio Forum Inc. Page 73

All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION|

4 1DL

The following idl files were generated by MagicDraw version 17 and compiled with OIS
OrbExpress idl2cpp Version 3.0.0 (FC04).

41 Irss.idl

/xx
IRSS.idl

Comments have been omitted from this file.
Please refer to the IRSS API Specification for details.

Copyright:

This document has been prepared by the members of the International Security
Services API Task Group to assist The Software Defined Radio Forum Inc. (or
its successors or assigns, hereafter “the Forum”). It may be amended or

withdrawn at a later time and it is not binding on any member of the Forum

or of the International Security Services API Task Group. Contributors to
this document that have submitted copyrighted materials (the Submission) to
the Forum for use in this document retain copyright ownership of their
original work, while at the same time granting the Forum a non-exclusive,
irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s
copyrights in the Submission to reproduce, distribute, publish, display,
perform, and create derivative works of the Submission based on that original
work for the purpose of developing this document under the Forum's own
copyright. Permission is granted to the Forum’s participants to copy any
portion of this document for legitimate purposes of the Forum. Copying for
monetary gain or for other non-Forum related purposes is prohibited.

Permission is granted to the Forum’s participants to copy any portion of this
document for legitimate purposes of the Forum.

(c) The Software Defined Radio Forum Inc. doing business as
The Wireless Innovation Forum
First fixed in 2011, all rights reserved.

E R S S N S S S S S S S N e e S S N S

*

*/
$ifndef TRSS_idl
#define IRSS_idl

module IRSS
{

typedef unsigned long ChannelId;

exception InvalidChannelId

{
bi

exception ConfigurationInactive

{
bi

}i
#endif

4.2 Bypass.idl

/**
* Bypass.idl
*

* Comments have been omitted from this file.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 74
All Rights Reserved

LR S R N S S S S S S S e ST S S

*

*

#
#
#
#

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
INHQVARON IRSS API Specification
WINNF-09-S-0011-V1.0.0

Please refer to the IRSS API Specification for details.

Copyright:

This document has been prepared by the members of the International Security
Services API Task Group to assist The Software Defined Radio Forum Inc. (or
its successors or assigns, hereafter “the Forum”). It may be amended or
withdrawn at a later time and it is not binding on any member of the Forum

or of the International Security Services API Task Group. Contributors to
this document that have submitted copyrighted materials (the Submission) to
the Forum for use in this document retain copyright ownership of their
original work, while at the same time granting the Forum a non-exclusive,
irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s
copyrights in the Submission to reproduce, distribute, publish, display,
perform, and create derivative works of the Submission based on that original
work for the purpose of developing this document under the Forum's own
copyright. Permission is granted to the Forum’s participants to copy any
portion of this document for legitimate purposes of the Forum. Copying for
monetary gain or for other non-Forum related purposes is prohibited.

Permission is granted to the Forum’s participants to copy any portion of this
document for legitimate purposes of the Forum

(c) The Software Defined Radio Forum Inc. doing business as
The Wireless Innovation Forum
First fixed in 2011, all rights reserved.
/
ifndef Bypass_idl
define Bypass_ idl
include "CF.idl"
include "IRSS.idl"

module IRSS

{

}

module Bypass
{

exception MaxBypassSizeExceeded

{
}i

interface Consumer

{
void PushBypass(in CF::0ctetSequence bypass);

bi

exception PolicyViolation

{
bi

interface Channel
{
void PushBypass(in IRSS::ChannellId channel,
in CF::0OctetSequence bypass)
raises(IRSS::InvalidChannellId,
MaxBypassSizeExceeded,
PolicyViolation);
unsigned long GetMaxBypassSize(in IRSS::ChannelId channel)
raises(IRSS::InvalidChannelId);

}i
}:

’

#endif

Copyright © 2011 The Software Defined Radio Forum Inc. Page 75
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
INHQVARON IRSS API Specification
WINNF-09-S-0011-V1.0.0

4.3 Control.idl

/**

* Control.idl

*

Comments have been omitted from this file.

Please refer to the IRSS API Specification for details.

Copyright:

This document has been prepared by the members of the International Security
Services API Task Group to assist The Software Defined Radio Forum Inc. (or
its successors or assigns, hereafter “the Forum”). It may be amended or
withdrawn at a later time and it is not binding on any member of the Forum

or of the International Security Services API Task Group. Contributors to
this document that have submitted copyrighted materials (the Submission) to
the Forum for use in this document retain copyright ownership of their
original work, while at the same time granting the Forum a non-exclusive,
irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s
copyrights in the Submission to reproduce, distribute, publish, display,
perform, and create derivative works of the Submission based on that original
work for the purpose of developing this document under the Forum's own
copyright. Permission is granted to the Forum’s participants to copy any
portion of this document for legitimate purposes of the Forum. Copying for
monetary gain or for other non-Forum related purposes is prohibited.

Permission is granted to the Forum’s participants to copy any portion of this
document for legitimate purposes of the Forum

(c) The Software Defined Radio Forum Inc. doing business as
The Wireless Innovation Forum
First fixed in 2011, all rights reserved.

LR S S S S S S . T A e S S S T ST S N .

*

*/

#ifndef Control idl
#define Control idl
#include "CF.idl"
#include "IRSS.idl"

module IRSS
{

module Control

{
typedef unsigned long EndpointId;
const IRSS::Control::EndpointId UNUSED ENDPOINT ID = OxFFFFFFFF ;

enum Duplexity

{
SIMPLEX RX,
SIMPLEX TX,
FULL DUPLEX,
HALF DUPLEX

}i
typedef unsigned long KeyId;
typedef unsigned long CryptoModulelId;

exception InvalidCertificateId

{
bi
exception ChannelCreationError
{
string reason;

}i

exception ConfigurationActivationError

{

Copyright © 2011 The Software Defined Radio Forum Inc. Page 76
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
INHQVARON IRSS API Specification
WINNF-09-S-0011-V1.0.0

string reason;
}i

exception InvalidAlgorithmId
{

}i

exception InvalidConfiguration

{
bi

exception InvalidConfigurationId

{
bi

exception InvalidCryptoApplicationId
{

}i

exception InvalidEndpointId
{

}i

exception InvalidEndpointPair
{

}i

exception InvalidKey

{
bi

exception InvalidKeyId

{
bi

exception InvalidKeyUpdateAlgorithmId
{

}i

exception InvalidModuleId

{

}i

exception KeyUpdateError
{ string reason;

bi

exception UnrecognizedCertificate

{

}i

typedef unsigned long Certificateld;
typedef unsigned long ConfigurationId;

typedef unsigned long CryptoApplicationId;

Copyright © 2011 The Software Defined Radio Forum Inc. Page 77
All Rights Reserved

w
el Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION|

typedef unsigned long HashAlgorithmId;

typedef unsigned long KeyUpdateAlgorithmId;

typedef unsigned long MacAlgorithmId;

typedef unsigned long SignatureAlgorithmId;

typedef sequence<CertificateId> CertificateIdSequence;

typedef sequence<CryptoApplicationId> CryptoApplicationIdSequence;

struct CryptographicConfiguration
{
IRSS::Control::CryptoApplicationId cryptoApplication;
IRSS::Control::KeyId tek;
IRSS::Control::Duplexity duplexity;
CF::0ctetSequence other;

bi

struct TransecConfiguration

{
IRSS::Control::CryptoApplicationId cryptoApplication;
IRSS::Control::KeyId tsk;
CF::0ctetSequence other;

}i

interface CertificateMgmt
{
CF::0ctetSequence RetrieveCertificate(in CertificateId certId)
raises(InvalidCertificateId);
CertificateIdSequence GetCertificateIds();
boolean IsCertifcateValid(in CF::0OctetSequence certificate)
raises (UnrecognizedCertificate);

bi

interface KeyMgmt
{
void UpdateKey(in KeyId updateKeyId)
raises(InvalidKeyId, KeyUpdateError);
void UpdateKeyWithAlgorithm (
in KeyId updateKeyId,
in KeyUpdateAlgorithmId algorithm)
raises(
InvalidKeyId,
KeyUpdateError,
InvalidKeyUpdateAlgorithmId);
unsigned short GetUpdateCount (in KeyId updateCountKeyId)
raises(InvalidKeyId);
void ZeroizeKey(in KeyId zeroizeKeyId) raises(InvalidKeyId);

bi

interface ChannelMgmt
{
IRSS::Channelld CreateCryptographicChannel (
in CryptoModuleId cm,
in EndpointId ptEndpoint,
in EndpointId ctEndpoint,
in CryptoApplicationIdSequence cryptoApps,
in Duplexity channelDuplexity)
raises(InvalidModulelId,
InvalidEndpointId,
InvalidEndpointPair,
InvalidCryptoApplicationId,
ChannelCreationError);

Copyright © 2011 The Software Defined Radio Forum Inc. Page 78
All Rights Reserved

w
el Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION|

IRSS::ChannelId CreateTransecChannel (
in CryptoModuleId cm,
in EndpointId endpoint,
in CryptoApplicationIdSequence cryptoApps,
in Duplexity channelDuplexity)
raises(InvalidModuleId,
InvalidCryptoApplicationId,
ChannelCreationError,
InvalidEndpointId);
IRSS::ChannelId CreateBypassChannel (
in CryptoModuleId cm,
in EndpointId sourceEndpoint,
in EndpointId destinationEndpoint)
raises(ChannelCreationError,
InvalidModulelId,
InvalidEndpointId,
InvalidEndpointPair);
TIRSS::ChannellId CreateHashChannel (
in CryptoModuleId cm,
in EndpointId inputEndpoint,
in HashAlgorithmId hashAlogrithm)
raises(ChannelCreationError,
InvalidModulelId,
InvalidEndpointId,
InvalidAlgorithmId);
IRSS::ChannelId CreateMacChannel (
in CryptoModuleId cm,
in EndpointId inputEndpoint,
in MacAlgorithmId macAlogrithmId,
in KeyId macKeyId)
raises(InvalidKeyId,
ChannelCreationError,
InvalidAlgorithmId,
InvalidModuleId,
InvalidEndpointId);
IRSS::ChannelId CreateSignatureChannel (
in CryptoModuleId cm,
in EndpointId inputEndpoint,
in SignatureAlgorithmId algorithmId,
in CertificateId certId)
raises(InvalidCertificateld,
ChannelCreationError,
InvalidModuleId,
InvalidEndpointId,
InvalidAlgorithmId);
IRSS::Channelld CreateSignatureVerificationChannel (
in CryptoModuleId cm,
in EndpointId inputEndpoint,
in SignatureAlgorithmId algorithmId,
in CF::0OctetSequence publicKey)
raises(ChannelCreationError,
InvalidModuleId,
InvalidEndpointId,
InvalidKey,
InvalidAlgorithmId);
IRSS::Channelld CreateProtocolChannel (
in CryptoModuleId cm,
in EndpointId ptEndpoint,
in EndpointId ctEndpoint,
in CryptoApplicationId protocolApplicationlId)
raises(ChannelCreationError,
InvalidModulelId,
InvalidEndpointId,
InvalidCryptoApplicationId,
InvalidEndpointPair);
void DestroyChannel (
in IRSS::ChannelId channel)
raises(IRSS::InvalidChannellId);
ConfigurationId AddCryptographicConfiguration (
in IRSS::ChannellId channel,

Copyright © 2011 The Software Defined Radio Forum Inc. Page 79
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION| IRSS API Specification

bi
#e

WINNF-09-S-0011-V1.0.0

in CryptographicConfiguration configuration)
raises(IRSS::InvalidChannellId,
InvalidConfiguration);
ConfigurationId AddTransecConfiguration (
in IRSS::ChannelId channel,
in TransecConfiguration configuration)
raises(IRSS::InvalidChannellId,
InvalidConfiguration);
void RemoveConfiguration (
in ConfigurationId channelConfigId)
raises(InvalidConfigurationId);
void ActivateConfiguration (
in ConfigurationId channelConfigId,
in CF::0OctetSequence activationData)
raises(InvalidConfigurationId,
ConfigurationActivationError);
void DeactivateConfiguration (
in ConfigurationId channelConfigId)
raises(IRSS::ConfigurationInactive,
InvalidConfigurationId);

}i

ndif

4.4 landA.idl

/*

*

L e S S SR N N N S S S S S N N S S . S

*

*/
#i

*

IandA.idl

Comments have been omitted from this file.
Please refer to the IRSS API Specification for details.

Copyright:

This document has been prepared by the members of the International Security
Services API Task Group to assist The Software Defined Radio Forum Inc. (or
its successors or assigns, hereafter “the Forum”). It may be amended or
withdrawn at a later time and it is not binding on any member of the Forum

or of the International Security Services API Task Group. Contributors to
this document that have submitted copyrighted materials (the Submission) to
the Forum for use in this document retain copyright ownership of their
original work, while at the same time granting the Forum a non-exclusive,
irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s
copyrights in the Submission to reproduce, distribute, publish, display,
perform, and create derivative works of the Submission based on that original
work for the purpose of developing this document under the Forum's own
copyright. Permission is granted to the Forum’s participants to copy any
portion of this document for legitimate purposes of the Forum. Copying for
monetary gain or for other non-Forum related purposes is prohibited.

Permission is granted to the Forum’s participants to copy any portion of this
document for legitimate purposes of the Forum

(c) The Software Defined Radio Forum Inc. doing business as
The Wireless Innovation Forum

First fixed in 2011, all rights reserved.

fndef TandA idl

#define TIandA idl

#1
#1

nclude "CF.idl"
nclude "IRSS.idl"

module IRSS

{

module IandA
{

Copyright © 2011 The Software Defined Radio Forum Inc. Page 80

A

Il Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
INHQVARON IRSS API Specification
WINNF-09-S-0011-V1.0.0

exception InvalidMac

{
bi

exception InvalidSignature

{
bi

exception InvalidState

{
}i

exception MaxDataSizeExceeded
{

}i

interface Random
{
CF::0ctetSequence GetPseudoRandom (
in unsigned short seed,
in unsigned short numBytes);
CF::0ctetSequence GetRandom (
in unsigned short numBytes);

bi

abstract interface Channel
{
void PushData (
in IRSS::ChannelId channel,
in CF::0ctetSequence data)
raises(IRSS::InvalidChannelld,
MaxDataSizeExceeded);
unsigned long GetMaxDataSize(in IRSS::ChannelId channel)
raises(IRSS::InvalidChannelId);
void Reset (in IRSS::ChannellId channel)
raises(IRSS::InvalidChannellId);

}i

interface HashChannel : Channel

{
CF::0ctetSequence GetHash(in IRSS::ChannelId channel)
raises(IRSS::InvalidChannelld, InvalidState);

bi

interface SignatureChannel : Channel
{
CF::0ctetSequence GetSignature(in IRSS::Channelld channel)
raises(IRSS::InvalidChannellId, InvalidState);

}i

interface MacChannel : Channel
{
CF::0ctetSequence GetMac(in IRSS::ChannellId channel)
raises(IRSS::InvalidChannellId, InvalidState);
boolean IsMacValid/(
in IRSS::Channelld channel,
in CF::0ctetSequence mac)
raises(IRSS::InvalidChannelId, InvalidState, InvalidMac);

Copyright © 2011 The Software Defined Radio Forum Inc. Page 81
All Rights Reserved

WIRELESS

Security Work Group - International Radio Security Services AP1 Task Group
INHQVARON IRSS API Specification
WINNF-09-S-0011-V1.0.0

interface SignatureVerificationChannel : Channel
{
boolean IsSignaturevalid(
in IRSS::ChannelId channel,
in CF::0OctetSequence signature)
raises(IRSS::InvalidChannellId,
InvalidState,
InvalidSignature);

}i

}i
#endif

45 Infosec.idl
/**

* Infosec.idl

Comments have been omitted from this file.
Please refer to the IRSS API Specification for details.

Copyright:

This document has been prepared by the members of the International Security
Services API Task Group to assist The Software Defined Radio Forum Inc. (or
its successors or assigns, hereafter “the Forum”). It may be amended or
withdrawn at a later time and it is not binding on any member of the Forum

or of the International Security Services API Task Group. Contributors to
this document that have submitted copyrighted materials (the Submission) to
the Forum for use in this document retain copyright ownership of their
original work, while at the same time granting the Forum a non-exclusive,
irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s
copyrights in the Submission to reproduce, distribute, publish, display,
perform, and create derivative works of the Submission based on that original
work for the purpose of developing this document under the Forum's own
copyright. Permission is granted to the Forum’s participants to copy any
portion of this document for legitimate purposes of the Forum. Copying for
monetary gain or for other non-Forum related purposes is prohibited.

Permission is granted to the Forum’s participants to copy any portion of this
document for legitimate purposes of the Forum

(c) The Software Defined Radio Forum Inc. doing business as
The Wireless Innovation Forum
First fixed in 2011, all rights reserved.

R . S S N N S T S S S S N S S S S S . S

*

*/

#ifndef Infosec_ idl
#define Infosec idl
#include "CF.idl"
#include "IRSS.idl"

module IRSS
{
module Infosec

{

exception MaxPayloadSizeExceeded

{
}i

exception MaxPacketSizeExceeded

{

}i

Copyright © 2011 The Software Defined Radio Forum Inc. Page 82
All Rights Reserved

WIRELESS

INNOVATION|

exception Ba

{
bi

exception Ba

{
}i
struct Packe
{
CF::0cte
CF::0cte
}i
interface Co
{
oneway v
}i
typedef sequ
interface Cr

{

void Pus

void Pus

bi

interface Tr

{

void Enc

rais

void Dec

rais

CF::0cte

rais

rais

Copyright © 2011 The Software Defined Radio Forum Inc.

All Rights Reserved

Security Work Group - International Radio Security Services AP1 Task Group

dSomFlag

dTransecSeed

t

tSequence payload;
tSequence bypass;

ntrolSignals

oid FlowResume (in IRSS::ChannellId channel);

ence<Packet> PacketSequence;
yptographicConsumer

hStream (

in IRSS::ChannelId channel,
in boolean som,

in boolean eom,

in Packet streamPacket);
hPackets (

in IRSS::ChannelId channel,
in PacketSequence payload);

ansecChannel

ryptTransec (

in IRSS::ChannellId channel,
in CF::0OctetSequence seed,

in unsigned long numSeedBits,

inout CF::OctetSequence payload)

es(IRSS::InvalidChannellId,
BadTransecSeed,

IRSS::ConfigurationInactive,

MaxPayloadSizeExceeded);
ryptTransec (
in IRSS::ChannelId channel,
in CF::0OctetSequence seed,
in unsigned long numSeedBits,

inout CF::OctetSequence payload)

es(IRSS::InvalidChannelId,
BadTransecSeed,

IRSS::ConfigurationInactive,

MaxPayloadSizeExceeded) ;
tSequence GenerateKeyStream (
in IRSS::Channelld channel,
in CF::0ctetSequence seed,
in unsigned long numSeedBits,

in unsigned long numKeyStreamBits)

es(IRSS::InvalidChannelId,
BadTransecSeed,

IRSS::ConfigurationInactive);
unsigned long GetMaxPayloadSize(in IRSS::ChannelId

es(IRSS::InvalidChannelId);

channel

)

IRSS API Specification
WINNF-09-S-0011-V1.0.0

Page 83

}
#

WIRELESS

INNOVATION|

interface CryptographicChannel
{
boolean TransformStream (
in IRSS::ChannelId channel,
in boolean som,
in boolean eom,
in Packet streamPacket)
raises(IRSS::InvalidChannellId,
MaxPacketSizeExceeded,
BadSomFlag,
IRSS::ConfigurationInactive);
boolean TransformPackets (
in IRSS::ChannelId channel,
in PacketSequence payload)
raises(IRSS::InvalidChannelId,
MaxPayloadSizeExceeded,
MaxPacketSizeExceeded,
IRSS::ConfigurationInactive);
unsigned long GetMaxPayloadSize(in IRSS::ChannelId channel)
raises(IRSS::InvalidChannellId);
unsigned long GetMaxPacketSize(in IRSS::Channelld channel)
raises(IRSS::InvalidChannelId);
boolean SpaceAvailable(in IRSS::ChannelId channel)
raises(IRSS::InvalidChannellId);

bi

’

endif

4.6 Protocol.idl

/

*

LR . S S N S S S T ST S SN S N N N T T . S

*

*

#
#
#

* %

Protocol.idl

Comments have been omitted from this file.
Please refer to the IRSS API Specification for details.

Copyright:

This document has been prepared by the members of the International Security
Services API Task Group to assist The Software Defined Radio Forum Inc. (or
its successors or assigns, hereafter “the Forum”). It may be amended or
withdrawn at a later time and it is not binding on any member of the Forum

or of the International Security Services API Task Group. Contributors to
this document that have submitted copyrighted materials (the Submission) to
the Forum for use in this document retain copyright ownership of their
original work, while at the same time granting the Forum a non-exclusive,
irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s
copyrights in the Submission to reproduce, distribute, publish, display,
perform, and create derivative works of the Submission based on that original
work for the purpose of developing this document under the Forum's own
copyright. Permission is granted to the Forum’s participants to copy any
portion of this document for legitimate purposes of the Forum. Copying for
monetary gain or for other non-Forum related purposes is prohibited.

Permission is granted to the Forum’s participants to copy any portion of this
document for legitimate purposes of the Forum

(c) The Software Defined Radio Forum Inc. doing business as
The Wireless Innovation Forum
First fixed in 2011, all rights reserved.
/
ifndef Protocol idl
define Protocol idl
include "CF.idl"

Copyright © 2011 The Software Defined Radio Forum Inc.
All Rights Reserved

Security Work Group - International Radio Security Services AP1 Task Group
IRSS API Specification
WINNF-09-S-0011-V1.0.0

Page 84

w
el Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

INNOVATION|

#include "IRSS.idl"

module IRSS
{

module Protocol
{

interface Consumer
{
void PushMessage (
in IRSS::ChannelId channel,
in CF::0OctetSequence message);

bi

exception InvalidMessage

{
}i

exception MaxMessageSizeExceeded
{

}i

exception UnrecognizedMessage

{
}i

interface Channel
{
void PushMessage (
in IRSS::Channelld channel,
in CF::0OctetSequence message)
raises(IRSS::InvalidChannelld,
MaxMessageSizeExceeded,
InvalidMessage,
UnrecognizedMessage);

bi

}i
#endif

Copyright © 2011 The Software Defined Radio Forum Inc. Page 85
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

5 UML

In this document, most of the descriptive UML has been placed in section 2.3, and typical port
structures of IRSS components are shown in section 1.2. The subsections below detail non-
interface specifics that support the main interfaces.

5.1 Data Types

5.1.1 IRSS::Channelld

The Channelld identifies a communications channel for exchanging information between
waveform components and the IRSS.

typedef unsigned long Channelld;

5.1.2 IRSS::Control::Configurationld
The Configurationld identifies a channel configuration (Cryptographic or TRANSEC).

typedef unsigned long Configurationid;
5.1.3 IRSS::Control::CryptoApplicationld
The CryptoApplicationld identifies a cryptographic application (e.g. AES)
typedef unsigned long CryptoApplicationld;
5.1.4 IRSS::Control::Keyld
The Keyld identifies an individual key within the security subystem.
typedef unsigned long Keyld;
5.1.5 IRSS::Control::KeyUpdateAlgorithmid
The KeyUpdateAlgorithmld identifies an algorithm to be used when a key update is requested.
typedef unsigned long KeyUpdateAlgorithmld;

5.1.6 IRSS::Control::Endpointld

The Endpointld identifies an access point into a crypto module and is implementation defined.
Examples of types of endpoints include: physical hardware interfaces into a crypto module, IRSS
APl instance, and IP address.

typedef unsigned long Endpointld;
5.1.7 IRSS::Control::CryptoModulelld
The CryptoModulelld identifies a crypto module.

Copyright © 2011 The Software Defined Radio Forum Inc. Page 86
All Rights Reserved

@ Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
WINNF-09-S-0011-V1.0.0

typedef unsigned long CryptoModuleld;

5.1.8 IRSS::Control::Certificateld

The Certificateld identifies a specific certificate within the security subsystem.
typedef unsigned long Certificateld;

5.1.9 IRSS::Control::HashAlgorithmld

The HashAlgorithmld identifies a specific algorithm for generating hashes.
typedef unsigned long HashAlgorithmld;

5.1.10 IRSS::Control::MacAlgorithmld

The MacAlgorithmld identifies a specific algorithm for generating MACs.
typedef unsigned long MacAlgorithmid;

5.1.11 IRSS::Control::SignatureAlgorithmld

The SignatureAlgorithmld identifies a specific algorithm for computing digital signatures.
typedef unsigned long SignatureAlgorithmid;

5.1.12 IRSS::Control::CryptoApplicationldSequence

The CryptoApplicationldSequence identifies the ids of one or more crypto applications (e.g.
AES, DES, ...). Each sequence element is of type CryptoApplicationld (see 5.1.3).

typedef sequence<CryptoApplicationld> CryptoApplicationldSequence;
5.1.13 IRSS::Control::CertificateldSequence

The CertificateldSequence identifies the ids of the one or more certificates. Each sequence
element is of type Certificateld (see 5.1.8).

typedef sequence<Certificateld> CertificateldSequence;
5.1.14 IRSS::Infosec::PacketSequence

The PacketSequence consists of one or more packets. Each sequence element is of type
IRSS::Infosec::Packet (see 5.4.3).

typedef sequence<Packet> PacketSequence;

Copyright © 2011 The Software Defined Radio Forum Inc. Page 87
All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

5.2 Enumerations

5.2.1 IRSS::Control::Endpointld

For specifying Protocol channels with one endpoint, the UNUSED_ENDPOINT_ID is used for
the second endpoint parameter.

Const IRSS::Control::Endpointld UNUSED_ENDPOINT_ID = OxFFFFFFFF;
5.2.2 IRSS::Control::Duplexity

The Duplexity enumeration defines the four types of directional communication.
enum Duplexity

{
SIMPLEX_TX,
SIMPLEX_RX,
FULL_DUPLEX,
HALF_DUPLEX
}

5.3 Exceptions

5.3.1 IRSS::InvalidChannelld
exception InvalidChannelld { };

Exception Attributes | Description Type
InvalidChannelld | N/A The channel identifier specified is not a valid N/A
channel identifier

5.3.2 IRSS:Configurationlnactive
exception Configurationlnactive { };

Exception Attributes | Description Type
ConfigurationInactive | N/A A client attempted to deactivate in inactive N/A
configuration or use a channel without and
active configuration.

5.3.3 IRSS::Bypass::MaxBypassSizeExceeded
exception MaxBypassSizeExceeded { };

Exception Attributes | Description Type
MaxBypassSizeExceeded | N/A The maximum bypass size was exceeded N/A
Copyright © 2011 The Software Defined Radio Forum Inc. Page 88

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M| WINNF-09-S-0011-V1.0.0
5.3.4 IRSS::Bypass::PolicyViolation

exception PolicyViolation { };

Exception Attributes | Description Type
PolicyViolation | N/A The requested operation violates the bypass N/A
policy for the channel.

5.3.5 IRSS::Control::InvalidCertificateld
exception InvalidCertificateld { };

Exception Attributes | Description Type
InvalidCertificateld | N/A The certificate ID is not a valid certificate ID N/A

5.3.6 IRSS::Control::ChannelCreationError
exception ChannelCreationError {string reason };

Exception Attributes | Description Type
ChannelCreationError | reason The channel could not be created (e.g. string
cryptographic resources are not available.).
The reason attribute contains the reason for
the channel creation failure.

5.3.7 IRSS::Control::ConfigurationActivationError
exception ConfigurationActivationError {string reason };

Exception Attributes | Description Type
ConfigurationActivationError | reason The configuration could not be activated. | string
The reason attribute contains the reason
for the activation failure.

5.3.8 IRSS::Control::InvalidAlgorithmld
exception InvalidAlgorithmld { };

Exception Attributes | Description Type
InvalidAlgorithmlId | N/A The algorithm specified is not supported or is N/A
not a valid algorithm ID.

5.3.9 IRSS::Control::InvalidConfiguration
exception InvalidConfiguration { };

Copyright © 2011 The Software Defined Radio Forum Inc. Page 89
All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group
IRSS API Specification
WINNF-09-S-0011-V1.0.0

Exception Attributes | Description Type
InvalidConfiguration | N/A The configuration contains invalid elements N/A
(e.g. invalid key ID) or conflicting elements.
5.3.10 IRSS::Control::InvalidConfigurationid
exception InvalidConfigurationld { };
Exception Attributes | Description Type
InvalidConfigurationld | N/A The configuration ID is not a valid N/A
configuration ID
5.3.11 IRSS::Control::InvalidCryptoApplicationld
exception InvalidCryptoApplicationld { };
Exception Attributes | Description Type
InvalidCryptoApplicationld | N/A The cryptographic application ID is not | N/A
a valid configuration 1D
5.3.12 IRSS::Control::InvalidEndpointld
exception InvalidEndpointld { };
Exception Attributes | Description Type
InvalidEndpointld | N/A The endpoint ID is not a valid endpoint ID. N/A
5.3.13 IRSS::Control::InvalidEndpointPair
exception InvalidEndpointPair { };

Exception Attributes | Description Type
InvalidEndpointPair | N/A A channel cannot be created between the N/A
endpoints specified.

5.3.14 IRSS::Control::InvalidKey
exception InvalidKey { };
Exception Attributes | Description Type
InvalidKey N/A The key ID specified is not a valid key ID. N/A
Copyright © 2011 The Software Defined Radio Forum Inc. Page 90

All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

5.3.15 IRSS::Control::InvalidkeyUpdateAlgorithmld
exception InvalidKeyUpdateAlgorithmld { };

Exception Attributes | Description Type
InvalidKeyUpdateAlgorithmid | N/A The key update algorithm ID is not a N/A
valid update algorithm ID for this type
of key
5.3.16 IRSS::Control::InvalidModuleld
exception InvalidModuleld { };
Exception Attributes | Description Type
InvalidModuleld | N/A The crypto module ID is not a valid crypto N/A
module ID.
5.3.17 IRSS::Control::KeyUpdateError
exception KeyUpdateError { string reason };
Exception Attributes | Description Type
KeyUpdateError | reason The key could not be updated. The reason string
attribute contains the reason for the key update
failure.
5.3.18 IRSS::Control::UnrecognizedCertificate
exception UnrecognizedCertificate { };

Exception Attributes | Description Type
UnrecognizedCertificate | N/A the certificate data passed was not in the N/A
right format

5.3.19 IRSS::landA::InvalidMac
exception InvalidMac { };
Exception Attributes | Description Type
InvalidMac N/A The MAC given is not the right size/format. N/A
Copyright © 2011 The Software Defined Radio Forum Inc. Page 91

All Rights Reserved

WIRELEGG Security Work Group - International Radio Security Services AP1 Task Group
INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

5.3.20 IRSS::landA::InvalidSignature
exception InvalidSignature { };

Exception Attributes | Description Type
InvalidSignature | N/A The signature given is not the right size/format. | N/A

5.3.21 IRSS::landA::InvalidState
exception InvalidState { };

Exception Attributes | Description Type
InvalidState N/A The system is not in the correct state to complete | N/A
the operation. For example, data has not yet
been pushed to generate a result.

5.3.22 IRSS::landA::MaxDataSizeExceeded
exception MaxDataSizeExceeded { };

Exception Attributes | Description Type
MaxDataSizeExceeded | N/A A client made an attempt to push data that N/A
exceeded the maximum allowable size.

5.3.23 IRSS::Infosec::MaxPayloadSizeExceeded
exception MaxPayloadSizeExceeded { };

Exception Attributes | Description Type
MaxPayloadSizeExceeded | N/A The entire payload exceeded the maximum | N/A
payload size.

5.3.24 IRSS::Infosec::MaxPacketSizeExceeded
exception MaxPacketSizeExceeded { };

Exception Attributes | Description Type
MaxPacketSizeExceeded | N/A One or more packets exceeded the N/A
maximum packet size.

5.3.25 IRSS::Infosec::BadSomFlag
exception BadSomFlag { };

| Exception | Attributes | Description | Type |

Copyright © 2011 The Software Defined Radio Forum Inc. Page 92
All Rights Reserved

w . - . . .
et Security Work Group - International Radio Security Services AP1 Task Group

INDQVARAY IRSS API Specification
F o R UM WINNF-09-5-0011-V1.0.0
Exception Attributes | Description Type
BadSomFlag N/A A packet tagged as SOM was received in the N/A

middle of a previously started message, or a
packet to start a message was received without
the SOM flag set.

5.3.26 IRSS::Infosec::BadTransecSeed
exception BadTransecSeed { };

Exception Attributes | Description Type
BadTransecSeed | N/A The seed provided does not contain at least N/A
numSeedBits of seed data or does not contain
the number of seed bits required by the
algorithm.

5.3.27 IRSS::Protocol::InvalidMessage
exception InvalidMessage { };

Exception Attributes | Description Type
InvalidMessage N/A The client passed a message that is N/A
not valid for this protocol or is not
valid at this time.

5.3.28 IRSS::Protocol::MaxMessageSizeExceeded
exception MaxMessageSizeExceeded { };

Exception Attributes Description Type

MaxMessageSizeExceeded N/A The maximum N/A
message size has
been exceeded.

5.3.29 IRSS::Protocol::UnrecognizedMessage
exception UnrecognizedMessage { };

Exception Attributes | Description Type
UnrecognizedMessage N/A The waveform client passed a | N/A
message that is not recognized
by the IRSS.
Copyright © 2011 The Software Defined Radio Forum Inc. Page 93

All Rights Reserved

w . - . . .
e Security Work Group - International Radio Security Services AP1 Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

5.4 Structures
5.4.1 IRSS::Control::CryptographicConfiguration

The CryptographicConfiguration structure defines the configuration of the cryptographic
channel.

struct CryptographicConfiguration

IRSS::Control::CryptoApplicationld cryptoApplication;
IRSS::Control::Keyld tek;

IRSS::Control::Duplexity duplexity;
CF::OctetSequence other;

I3
Struct Attributes Description Type Valid Range
Cryptographic | cryptoApplication | A CryptoApplicationld See 5.1.3 | Platform
Configuration identifies the cryptographic dependent
application.
tek Key Identifier of the Traffic | See 5.1.4 | Platform
Encryption Key (TEK) to be dependent

used with this configuration.
Some CAs may allow for the
selection of tek on a packet
by packet basis. These CAs
would typically ignore this
attribute and specify the key
as part of metadata contained
within the packet.

duplexity Duplexity defines the type of | See 5.2.2 | Enumeration
directional communication. See 5.2.2

other (optional) Additional CF::Octet | configuration
information needed as Sequence | dependent

required for the
configuration.

5.4.2 IRSS::Control::TransecConfiguration
struct TransecConfiguration

{
IRSS::Control::CryptoApplicationld cryptoApplication;
IRSS::Control::Keyld tsk;
CF::OctetSequence other;
I3
Copyright © 2011 The Software Defined Radio Forum Inc. Page 94

All Rights Reserved

WIRELESS
INNOVATION

FOR U M

Security Work Group - International Radio Security Services AP1 Task Group

IRSS API Specification
WINNF-09-S-0011-V1.0.0

Struct Attributes Description Type Valid Range
TransecConfi | cryptoApplication | A CryptoApplicationld See 5.1.3 | Platform
guration identifies the cryptographic dependent
application.
tsk Key Identifier of the See 5.1.4 | Platform
TRANSEC (TSK) key to be dependent
used with this configuration.
other (optional) Additional CF::Octet | configuration
information needed as Sequence | dependent
required for the
configuration.
5.4.3 IRSS::Infosec::Packet
struct Packet
{
CF::OctetSequence payload;
CF::OctetSequence bypass;
I3
Struct Attributes | Description Type Valid Range
Packet payload The data that is to be CF::OctetSequence | Cryptographic
transformed. application
dependent
bypass inline data that isto be | CF::OctetSequence | Cryptographic
bypassed. application
dependent
55 Unions
None
Copyright © 2011 The Software Defined Radio Forum Inc. Page 95

All Rights Reserved

i . . . : :
RN Security Work Group - International Radio Security Services API Task Group

INNOVATION IRSS API Specification
FORU M WINNF-09-S-0011-V1.0.0

Appendix A ACRONYMS

CA Cryptographic Application

CF Core Framework

CSS Cryptographic SubSystem

CT Ciphertext

EOM End of Message

IRSS International Tactical Radio Security Service
v Initialization Vector

MAC Message Authentication Code

OE Operating Environment

PT Plaintext

SCA Software Communications Architecture

SD Security Domain

SDR Software Defined Radio

SOM Start of Message

TRANSEC TRANsmission SECurity

WF Waveform

Copyright © 2011 The Software Defined Radio Forum Inc. Page 96

All Rights Reserved

